首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
The Gram-positive bacterium Listeria monocytogenes can enter the human central nervous system and cause life-threatening meningitis. During this process the pathogen has to invade and cross diverse cellular barriers involving the functions of the surface proteins Internalin (InlA) and InlB. Whereas the internalin-dependent crossing of the intestinal epithelium and the fetoplacental barrier have been subject to intensive investigation, limited research elucidating the crossing of the human blood–cerebrospinal fluid barrier (BCSFB) has been reported. We have recently established a functional in vitro model of the BCSFB based on human choroid plexus papilloma (HIBCPP) cells. We show polarized expression of receptors involved in listerial invasion (i.e. E-Cadherin, Met) in HIBCPP cells. Infecting HIBCPP cells with the L. monocytogenes strain EGD, we demonstrate polar invasion exclusively from the in vivo relevant basolateral cell side. Intracellular listeria were found in vacuoles and the cytoplasm, where they were often associated with “actin tail”-like structures. Furthermore, the L. monocytogenes wild type strain shows significantly higher internalization rates than isogenic mutants lacking either InlA, InlB or both surface proteins. Deletion of either one or both proteins leads to a similarly decreased invasion, suggesting an interdependent function of InlA and InlB during invasion of choroid plexus epithelial cells.  相似文献   

3.
Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-component system-defective mutants, ΔgacA and ΔgacS, and a double mutant, ΔgacAΔgacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported in this paper have been submitted to the DDBJ/GenBank/EMBL databank with the accession numbers AB266103, AB266104, AB266105, AB266106, AB266107, AB266108.  相似文献   

4.
The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin‐based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB‐mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial‐induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin‐based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell‐to‐cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N‐WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42‐GTP or Tuba/N‐WASP interaction.  相似文献   

5.
6.
Listeria monocytogenes causes rhombencephalitis in humans and animals and also affects the fetus in utero , causing disseminated sepsis. In both instances, the infection occurs by the crossing of endothelial cells lining a physiological barrier, the blood–brain barrier or the transplacental barrier. In this study, the ability of L. monocytogenes wild-type EGD to invade human umbilical vein endothelial cells (HUVECs) was evaluated using wild-type bacteria and isogenic Listeria mutants. Here, we show that invasion of HUVECs by L. monocytogenes is dependent on the expression of the internalin B gene product. This was demonstrated in several ways. First, L. monocytogenes strains lacking the inl B gene did not invade HUVECs. Secondly, avid invasion was obtained when a strain deleted for inl AB was complemented with a plasmid harbouring inl B only, whereas strains expressing inl A did not enter HUVECs. Thirdly, entry of wild-type EGD could be blocked effectively with antibodies to InlB. Fourthly, cell binding assays and flow cytometry with HUVECs showed binding of purified InlB, but not InlA, suggesting a tropism of InlB for this cell type. Finally, physical association of purified native InlB with the surface of non-invasive mutants dramatically increased their ability to invade HUVECs. In laser-scanning confocal microscopy, binding of InlB was observed as focal and localized patches on the cell surface of HUVECs. Qualitative examination of the entry process by scanning electron microscopy revealed that both wild-type EGD and a recombinant strain overexpressing only InlB enter HUVECs in a similar fashion. The entry process was polarized, involved single bacteria and occurred over the entire surface of endothelial cells.  相似文献   

7.
8.
Listeria monocytogenes Internalin and E-cadherin: From Bench to Bedside   总被引:1,自引:0,他引:1  
Listeria monocytogenes is a Gram-positive bacterium responsible for a severe infection associated with different clinical features (gastroenteritis, meningoencephalitis, and abortion in pregnant women). These pathologies are caused by the unusual capacity of the bacterium to cross three host barriers during infection and to invade nonphagocytic cells. To invade host cells, Listeria uses two proteins, InlA and InlB, which have specific receptors on the host-cell surface, E-cadherin and Met, respectively. Here, we discuss the specificity of the InlA–E-cadherin interaction, the signaling cascade activated on E-cadherin engagement by InlA, and the role of InlA and E-cadherin in the breaching of host barriers and the dissemination of the infection.Listeriosis is a potentially lethal food-borne infection with a mortality rate up to 30%. It has emerged as a significant human infection in industrialized countries along with the development of large-scale agro-industrial plants and refrigerated food. Opposite to most food-borne infections, listeriosis is rare but potentially very severe, because it remains often under-diagnosed at its early stages (Lecuit 2007). The etiological agent of listeriosis is Listeria monocytogenes, a Gram-positive bacterium that contaminates meat, dairy products, and ready to eat food. Upon ingestion of contaminated food, L. monocytogenes can colonize the intestine and gives rise to gastroenteritis in case of the absorption of a high inoculum. Strikingly, L. monocytogenes has the capacity to cross the intestinal barrier and disseminate to the mesenteric lymph nodes, spleen, and liver. In immunocompromised individuals, L. monocytogenes may replicate in the spleen and liver, cause prolonged and sustained bacteremia, cross the blood–brain barrier and the placental barrier, and disseminate to the brain and placenta, causing meningitis, encephalitis, abortion in pregnant women, and neonatal infections (Hamon et al. 2006; Bonazzi et al. 2009).The capacity of L. monocytogenes to cross multiple host barriers relies on the ability of the bacterium to invade nonphagocytic cells, such as epithelial cells, by interacting with host cell-surface receptors. Adhesion to host cells is a key step underlying bacterial pathogenicity and it is required to counteract the mechanical clearance at tissue surfaces provided by intestinal peristaltism and blood flow. Internalization allows persistence in a shielded niche, away from the soluble effectors of the host immune system (Cossart and Sansonetti 2004; Pizarro-Cerda and Cossart 2006), and access to target organs, as illustrated by L. monocytogenes (Bonazzi et al. 2009).Bacterial surface proteins that engage host receptors are generally called adhesins, although it is now clear that many of them not only mediate adhesion, but also bacterial internalization (Boyle and Finlay 2003; Hauck et al. 2006; Pizarro-Cerda and Cossart 2006). Adhesion to and internalization of L. monocytogenes within epithelial cells is mainly mediated by two bacterial surface protein members of the internalin family, namely internalin (InlA) and InlB, that use E-cadherin and Met as receptors, respectively, on the surface of host cells (Hamon et al. 2006; Pizarro-Cerda and Cossart 2006; Bonazzi et al. 2009). Upon receptor-mediated internalization, L. monocytogenes is engulfed into the cell and becomes surrounded by a tight phagocytic vacuole that the bacterium can lyse by means of the pore-forming toxin listeriolysin O (LLO). Once free in the cytoplasm of the host cell, L. monocytogenes uses the protein ActA to harness the actin polymerization machinery and facilitate its intracellular movement via the formation of so-called actin “comet tails.” Actin-based motility is fundamental for L. monocytogenes direct cell-to-cell spread, a typical feature that allows the dissemination of the infection to neighboring cells via the formation of plasma membrane protrusions. Once internalized by neighboring cells, L. monocytogenes is confined in a double-membrane vacuole from which it escapes to restart its life cycle (Fig. 1) (Hamon et al. 2006).Open in a separate windowFigure 1.The cell cycle of L. monocytogenes. (1) L. monocytogenes adheres to the surface of epithelial cells via the interactions of the surface proteins InlA and InlB with E-cadherin and the Met receptor, respectively. (2) On internalization, L. monocytogenes is engulfed in a phagocytic vacuole. (3) L. monocytogenes lyses vacuolar membranes by means of the toxin LLO. (4) L. monocytogenes uses the protein ActA to harness the actin polymerization machinery and facilitate its intracellular movement via the formation of so-called actin “comet tails.” (5) L. monocytogenes exploits actin-based motility for direct cell-to-cell spread to allow the dissemination of the infection to neighboring cells via the formation of plasma membrane protrusions. (6) Once internalized by neighboring cells, L. monocytogenes is confined in a double-membrane vacuole from which it escapes to restart its life cycle.Its remarkable adaptation to the cellular environment and its capacity to exploit cellular receptor-mediated signaling pathways and the actin polymerization machinery have made L. monocytogenes an exceptional tool for the study of a wide array of cellular functions (Cossart and Sansonetti 2004; Bonazzi and Cossart 2006; Hamon et al. 2006; Pizarro-Cerda and Cossart 2006; Veiga and Cossart 2005a; Bonazzi et al. 2009). Here, we review the interaction of InlA with E-cadherin, the signaling pathway initiated by this interaction that results in the internalization of L. monocytogenes, and the role of InlA-E-cadherin interaction during listeriosis.  相似文献   

9.
Listeria monocytogenes is a Gram-positive, intracellular pathogen harboring the surface-associated virulence factor InlB, which enables entry into certain host cells. Structurally diverse wall teichoic acids (WTAs), which can also be differentially glycosylated, determine the antigenic basis of the various Listeria serovars. WTAs have many physiological functions; they can serve as receptors for bacteriophages, and provide a substrate for binding of surface proteins such as InlB. In contrast, the membrane-anchored lipoteichoic acids (LTAs) do not show significant variation and do not contribute to serovar determination. It was previously demonstrated that surface-associated InlB non-covalently adheres to both WTA and LTA, mediating its retention on the cell wall. Here, we demonstrate that in a highly virulent serovar 4b strain, two genes gtlB and gttB are responsible for galactosylation of LTA and WTA respectively. We evaluated the InlB surface retention in mutants lacking each of these two genes, and found that only galactosylated WTA is required for InlB surface presentation and function, cellular invasiveness and phage adsorption, while galactosylated LTA plays no role thereof. Our findings demonstrate that a simple pathogen-defining serovar antigen, that mediates bacteriophage susceptibility, is necessary and sufficient to sustain the function of an important virulence factor.  相似文献   

10.
Yu WL  Dan H  Lin M 《Current microbiology》2008,56(5):505-509
The internalins InlA and InlC2 are encoded proteins from two strongly immunoreactive clones recently identified by differential immunoscreening of a Listeria monocytogenes serotype 4b genomic expression library during the search of the gene products of L. monocytogenes specifically induced in vivo during infection (Yu WL, Dan H, Lin M. J Med Microbiol 56:888–895, 2007). In this study, we examined the humoral immune response against InlA and InlC2 in various L. monocytogenes-infected hosts using Western blots. InlA and InlC2 were recognized by antibodies in experimentally infected rabbits but not by antisera from rabbits immunized with the heat-killed bacterium. Similar strong immunological reactions to InlA and InlC2 were seen with antisera from infected guinea pigs, cattle, and sheep but not with those from the animals (guinea pigs or sheep) receiving heat-killed bacteria. This study provides the first experimental evidence that InlA and InlC2 are the in vivo induced or upregulated antigens for humoral immune responses that are common to listerial infection of various host species. These two immunogenic proteins may thus be explored as reagents for the laboratory diagnosis of listeriosis or candidates for vaccine development.  相似文献   

11.
To determine the contribution of the previously identified internalins, InlA, InlB, InlC, InlE, InlG, and InlH, to internalization of Listeria monocytogenes by non-professional phagocytic mammalian cells, we constructed mutants with various combinations of deletions in the respective inl genes. Internalization of these mutants into the epithelial-like Caco-2 and the microvascular endothelial HBMEC cell lines were studied. Deletion of the inlGHE gene cluster, or of the single genes, led to a two to fourfold increased internalization by HBMEC and other non-phagocytic mammalian cells. Invasion into HBMEC was totally blocked in the absence of InlB, and InlB-dependent internalization did not require the presence of any of the other internalins. Internalization by Caco-2 cells was reduced to a level of about 1% in the absence of InlA and InlB, and was most efficient in the presence of InlA, InlB and InlC and in the absence of InlG, InlH and InlE. InlB and InlA, in each case in the absence of the other internalins, led (compared with the wild-type strain) to reduced internalization of about 20% and less than 10% respectively. InlA-dependent internalization (in the absence of InlB) required the additional function of InlC and InlGHE. The deletion of inlGHE enhanced the expression of InlA and InlB. The increased amount of InlA led to an increase in early association of L. monocytogenes with Caco-2 cells without enhancing its uptake in the absence of the other internalins, whereas the larger amount of InlB did not enhance early association of L. monocytogenes with HBMEC but led to an increase in internalization of L. monocytogenes. The results suggest that InlB is able to induce phagocytosis in HBMEC and (at a lower efficiency) in Caco-2 cells by itself, but InlA needs the supportive functions of the other internalins to trigger phagocytosis. None of these internalins seems to be required for cell-to-cell spread by L. monocytogenes, as shown by microinjection of Caco-2 cells with appropriate inl mutants.  相似文献   

12.

Background  

Internalin A (InlA) is a critical virulence factor which mediates the initiation of Listeria monocytogenes infection by the oral route in permissive hosts. The interaction of InlA with the host cell ligand E-cadherin efficiently stimulates L. monocytogenes entry into human enterocytes, but has only a limited interaction with murine cells.  相似文献   

13.
Aims: In this study, 105 Listeria monocytogenes strains isolated from humans, foods and environmental samples were characterized using several typing methods. Moreover, serotyping procedure was evaluated, and a cost‐effective methodological approach based on preliminary PCRs screening was proposed. Methods and Results: The isolates were analysed by conventional serotyping, multiplex‐PCRs for serogroup and lineage identification and PCR–RFLP of inlA gene to identify potentially noninvasive L. monocytogenes. Among the strains, only the serotypes 1/2a, 1/2c, 1/2b, 4b and 3a were identified. The isolates were classified into serogroups I (58·10%), II (22·85%), III (12·38%) and IV (6·67%). Among clinical strains, lineage I was more represented (68·75%) than lineage II; whereas, lineage II was more associated with food (90·24%) and environmental (85·72%) isolates. Most of food (89·02%) and environmental (85·71%) isolates were classified into truncated InlA profiles, whereas the 93·75% of clinical strains were associated with a complete form of the protein. Conclusion: Molecular techniques were sensitive and specific for classifying strains into serogroup and lineage and in agreement with the serotyping. Moreover, a preliminary PCRs‐based screening was proposed to select only the necessary antisera by a flow chart; this methodological approach allows cost saving up to 42%. Our results further suggest the role of InlA protein in human listeriosis, particularly in immunocompetent individuals, and a correlation between truncated protein and serotype. Significance and Impact of the Study: This study further validates molecular methods for L. monocytogenes analysis and proposed a new cost‐effective approach for serotyping. It could help to improve a national surveillance network for L. monocytogenes infections in Italy.  相似文献   

14.
【目的】筛选能有效抑制单核细胞增生李斯特菌(Listeria monocytogenes,LM)形成生物被膜的乳酸菌,分析其活性成分并进行功能表征。【方法】采用结晶紫染色法筛选抑制LM形成生物被膜的不同乳酸菌提取物;通过酸中和、蛋白酶处理及热处理,推测抑制生物被膜活性物质以胞外多糖(extracellular crude polysaccharide,ECP)为主;乙醇沉淀法提取目标乳酸菌分离株胞外粗多糖,分析其抑制生物被膜形成活性和对LM生长的影响;运用激光共聚焦扫描显微镜(laser confocal scanning microscopy,LCSM)和扫描电子显微镜(scanning electron microscopy,SEM)观察胞外粗多糖对生物被膜细胞形态和结构的影响。【结果】发酵乳杆菌CSC-19发酵上清液对1516-2LM生物被膜的抑制率为81.7%;经热和蛋白酶处理后,发酵上清抑制生物被膜形成的活性未发生显著变化(P>0.05),表明发酵上清液中抑制生物被膜形成的物质可能为胞外多糖;在不抑制LM生长的条件下所提取的胞外粗多糖抑制生物被膜形成能力具有浓度依赖性。激光共聚焦扫描显微镜和扫描电子显微镜结果显示,胞外粗多糖显著抑制了生物被膜的形成能力,生物被膜三维、有组织的蜂窝状结构被破坏,仅有少量的粘附细胞分散于细胞爬片表面。【结论】发酵乳杆菌CSC-19胞外粗多糖能有效抑制LM生物被膜的形成,有望应用于高效防控该菌污染食品。  相似文献   

15.
In this study, we investigated the incidence of Listeria monocytogenes in the receiving meat, the meat products, the personnel and the environment of a vertically integrated company in Northern Greece owing a processing plant and three trading facilities. A total of 303 samples were examined from the receiving raw meat, raw meat preparations, ready-to-eat meat products, processing surfaces and the environment of these facilities as well as the food handlers’ hands and nasal cavities. MALDI-TOF MS was used for Listeria identification; from the 22 (7·26%) positive to Listeria spp. isolates, 12 (3·96%) identified as L. monocytogenes, eight (2·64%) as Listeria innocua and two (0·66%) as Listeria welshimeri. Molecular serotyping of L. monocytogenes isolates by multiplex PCR revealed 11 strains belonging to serogroup IIa (1/2a and 3a) and one to IIc (1/2c and 3c). The assay for the detection of the virulence-associated genes revealed eight isolates carrying all the examined genes (inlA, inlB, inlC, plcA, prfA, actA, hlyA and iap) and four carrying all except the actA gene. Eleven (91·7%) of the isolates showed a strong ability to form biofilm. All isolates were multidrug resistant. The MALDI-TOF Main Spectrum Profile (MSPs), revealed three clusters: one with five isolates (four from environmental samples and one from a food handler), one with five isolates (all from environmental samples) and one with two isolates (both from raw meat products). MALDI-TOF MS seems to be a reliable tool for the identification of niches and contamination routes in processing plants, contributing also to the evaluation and improvement of the applied preventive measures to control L. monocytogenes.  相似文献   

16.
Summary Slow-growing (inl +/-) spontaneous mutants have been isolated from an inositol requiring (inl) strain of Neurospora crassa that produces defective myo-inositol-1-phosphate synthase (MIPS), the enzyme responsible for the production of inositol-1-phosphate from glucose-6-phosphate. The defective enzyme has some residual activity. In the inl +/- strain the synthesis of the defective enzyme is enhanced, which enables the strain to grow slowly on minimal medium. The mutation (opi1) responsible for the partial inositol independence segregates independently from the inositol locus, and suppresses the inositolless character by overproduction of defective MIPS. opi1 acting upon the wild type (inl +) allele increases MIPS production and causes inositol excretion.  相似文献   

17.
The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD+-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1Δ and gpd2Δ were studied under alcoholic fermentation conditions. gpd1Δ mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2Δ mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1Δ) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1Δ) but a slight decrease in the strain ANG2 (gpd2Δ). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1Δ) and ANG2 (gpd2Δ) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast.  相似文献   

18.
Listeria monocytogenes (Lm) invades the host intestine using listerial invasion proteins, internalins. The in vivo role of internalin A (InlA) and internalin B (InlB) is reported here. Intragastric (i.g.) administration and ligated loop assays with ΔinlB-Lm demonstrated that a lack of InlB significantly attenuates the invasive ability of Lm into various organs. On the other hand, InlA(m)-Lm expressing a mutant InlA with two substitutions, S192N and Y369S, which has been reported to increase the affinity of InlA to mouse E-cadherin, resulted in little increase in intestinal infection according to both ligated loop and i.g. infection assays. Lm preferentially enters ileal Peyer's patch (PP) via M cells and ΔinlB-Lm showed severely reduced ability to invade though these cells. The present results reveal the importance of InlB, which accelerates listerial invasion into M cells on ileal PPs in vivo.  相似文献   

19.
Summary Treatment of inositolless (inl) strains of Neurospora crassa with DNA from the wild type (allo-DNA) gives rise to inositol-independent (inl +) colonies. Some of these DNA-induced inl + strains (transformants) are sterile in sexual crosses on minimal medium that selects for the maintaining of the inl + character. The same inl + transformants, when crossed with an inl standard strain, are fertile on complete (inositol-containing) medium. There are, however, an increased number of unusual non-Mendelian tetrads (24%) among the progeny. The inl + and inl progeny from these complete non-Mendelian tetrads were further examined for the inheritance of the inl + trait. Several inl + progeny of these tetrads segregate inl conidia if growing on inositol-containing medium. The number of inl + conidia in certain inl + cultures decreases quickly under non-selective conditions. In transformants carrying mutant markers in linkage groups III, IV and VI non-Mendelian segregation of these traits can also be detected.The mechanism of the development of sterility and of the aberrant segregation is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号