首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重金属Zn2+胁迫下麦长管蚜的取食行为   总被引:1,自引:0,他引:1  
张丽  宋亚茜  高欢欢  罗坤  赵惠燕 《生态学报》2016,36(9):2537-2543
为了探索重金属锌长期胁迫对麦长管蚜(Sitobion avenae)取食行为的变化影响,在模拟自然的实验室条件下,用不同浓度Zn~(2+)溶液浇灌土壤,通过土壤-小麦-蚜虫体系连续处理麦长管蚜15代,用EPG(刺探电位技术)对第1、5、10、15代成蚜的取食行为进行了监测。结果表明,第1代和第5代时,200 mg/kg的Zn~(2+)处理后np波和C波的总持续时间和数量显著低于对照,800mg/kg的Zn~(2+)使其显著增加。到第15代,高剂量的Zn~(2+)处理后np波和C波的总持续时间和数量均显著高于对照。涉及分泌唾液的E1波持续时间及涉及被动取食营养的E2波出现次数并未受到低剂量Zn~(2+)的显著影响,但高剂量的Zn~(2+)处理后单独E1波、伴随稳定E2的E1波总持续时间及E2波的数量均显著降低。麦长管蚜的取食行为会受到重金属锌的影响并且会在高剂量Zn~(2+)的胁迫条件下产生积累效应,而低剂量的Zn~(2+)则促进麦长管蚜对小麦的取食行为。针对重金属而言,此效应发生改变的关键浓度为400 mg/kg,蚜虫取食行为发生改变的关键世代为第5代和第10代。  相似文献   

2.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme in the heme biosynthetic pathway, catalyzes the insertion of Fe2+ into protoporphyrin IX, generating heme. In vitro assays have shown that all characterized ferrochelatases can also incorporate Zn2+ into protoporphyrin IX. Previously Zn2+ has been observed at an inner metal binding site close to the porphyrin binding site. Mg2+, which stimulates Zn2+ insertion by Bacillus subtilis ferrochelatase, has been observed at an outer metal binding site. Exchange of Glu272 to a serine eliminated the stimulative effect of Mg2+. We found that Zn2+ quenched the fluorescence of B. subtilis ferrochelatase and this quenching was used to estimate the metal affinity. Trp230 was identified as the intrinsic fluorophore responsible for the observed quenching pattern. The affinity for Zn2+ could be increased by incubating the ferrochelatase with the transition state analogue N-methyl mesoporphyrin IX, which reflected a close collaborative arrangement between the two substrates in the active site. We also showed that the affinity for Zn2+ was lowered in the presence of Mg2+ and that bound Zn2+ was released upon binding of Mg2+. In the ferrochelatase with a Glu272Ser modification, the interaction between Zn2+ and Mg2+ was abolished. It could thereby be demonstrated that the presence of a metal at one metal binding site affected the metal affinity of another, providing the enzyme with a site that regulates the enzymatic activity.  相似文献   

3.
孟令博  赵曼  亢燕  祁智 《西北植物学报》2021,41(10):1681-1690
以羊草幼苗为研究对象,通过调整全营养培养基(CK,0.05 mmol/L Fe2+、0.015 mmol/L Zn2+)中铁或者锌含量设置0、10倍、20倍Fe2+(Zn2+)浓度处理Fe0(Zn0)、Fe10(Zn10)、Fe20(Zn20),以及在高铁培养基中单独添加0.15 mmol/L Zn2+或同时添加10 mmol/L Ca2+、5 mmol/L Mg2+、20 mmol/L K+处理,测定培养6 d后幼苗生长指标和矿质元素含量、以及高铁(Fe20)处理下幼苗根中抗氧化指标和相关基因表达量,探究不同浓度Fe2+、Zn2+对羊草幼苗生长、矿质元素吸收积累及抗氧化指标、基因表达的影响。结果表明:(1)缺锌(Zn0)显著抑制羊草幼苗鲜重的增加和Zn元素的积累,但促进Fe、Mg元素的积累;高浓度锌(Zn10、Zn20)显著促进幼苗叶片生长和Zn元素的积累;缺铁(Fe0)显著抑制幼苗的根长、鲜重和Fe元素的积累,促进Mg、Zn元素的积累;高浓度铁(Fe10、Fe20)显著抑制羊草幼苗根叶生长、根毛发育和Ca、Zn、Mg、K元素的积累。(2)增加Zn2+和Ca2+、Mg2+、K+浓度无法恢复高铁胁迫对幼苗生长的抑制作用。(3)高浓度铁(Fe20)处理羊草幼苗48 h后,根部过氧化物酶、超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、谷胱甘肽还原酶活性和丙二醛、抗坏血酸、还原型谷胱甘肽含量显著升高;烟酰胺合成酶基因、过氧化物酶基因表达量显著下调,植物类萌发素蛋白基因表达量显著上调。研究发现,羊草幼苗生长发育和矿质元素积累对环境中Zn2+浓度变化不敏感,却受到环境中高浓度Fe2+的显著抑制,并造成严重的氧化胁迫伤害,这种伤害无法在添加Zn2+或同时添加Ca2+、Mg2+、K+的条件下恢复。  相似文献   

4.
Zinc (Zn2+) was shown to invariably inhibit muscimol-stimulated36Cl uptake by synaptoneurosomes in the cerebral cortex, hippocampus and cerebellum. The Zn2+ sensitivity of the GABAA receptor-gated36Cl uptake in the cerebral cortex was comparable to that in the hippocampus, whereas the uptake in the cerebellum was less sensitive to Zn2+. Although diazepam-potentiation of muscimol-stimulated36Cl uptake was unaltered by 100 μM Zn2+ in the cerebellum. Zn2+ inhibited [3H]diazepam binding significantly at 1 mM in the cerebral cortex and cerebellum, whereas Ni2+ increased the binding in a concentration-dependent manner in both regions. Although lower concentrations of Zn2+ did not affect [3H]Ro 15-4513 binding to diazepam-sensitive sites, higher concentrations of Zn2+ increased the binding in both regions. Unlike the diazepam-sensitive sites the diazepam-insensitive [3H]Ro 15-4513 binding was not affected by Zn2+ or Ni2+ at any of the tested concentrations. These results suggest that the GABAA ligand-gated Cl flux and its diazepam-potentiation are heterogeneously modulated in various brain regions. It is also suggested that cerebellar diazepam-insensitive [3H]Ro 15-4513 binding sites are insensitive to Zn2+ and Ni2+.  相似文献   

5.
The ability of the filamentous fungus Verticillium marquandii for Zn2+ and Pb2+ uptake from aqueous solution was studied. The 24-h-old living mycelium bound Zn2+ and Pb2+ (206.2 and 324.5 mg/g dry weight, respectively) effectively, in contrast to a very low Zn2+ uptake by autoclaved mycelium (20.2 mg/g). The most effective results were noted when the metals were introduced as acetates and incubated with mycelium for 24 h in case of Zn2+ while Pb2+ achieved the maximum level of metal binding after as early as 3 h. The cell wall was the main site of effective Zn2+ and Pb2+ binding by V. marquandii mycelium (91.0–93.6% of metals were located in cell wall after 24 h of exposure). The metabolic inhibitors: antimycin A and sodium azide had a strong limitation effect on Zn2+ uptake by a 24-h-old living mycelium, whereas Pb2+ binding did not decrease to a large extent. The freshly obtained protoplasts accumulated Zn2+ and Pb2+ on a low level in comparison with cells at different stages of cell wall regeneration. The use of regenerating protoplasts showed that resynthesis of cell wall was necessary for high binding of Zn2+, whereas Pb2+ uptake on the significant level took place during cell wall regeneration. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   

7.
Expression of the light-inducible (lipA) gene in Arthrobacter photogonimos is repressed by Ca2+ at a concentration greater than 0.1 M. Expression of lipA was induced by relatively high concentrations of Zn2+ Ni2+ or Co2+ in cell suspensions, an effect that was blocked by an increase in the concentration of Ca2+ in the medium. Zn2+ and other metals apparently overcame repression by Ca2+ by competing for a cellular binding site. Expression of lipA was also induced when the amount of free Ca2+ was lowered with ethylene-bis (oxyethylenenitrilo)tetraacetic acid (EGTA). Our results show that the lipA gene does not require Zn2+ or other divalent cation for expression and that it is regulated negatively by Ca2+.Accumulation of the mature product of this gene (light-inducible protein, LIP) was minimal in the presence of EGTA. Accumulation increased 10-to 20-fold when divalent cations such as Ca2+, Mn2+, Cu2+ or Zn2+ were added to cell suspensions treated with chelator. These divalent cations, which allowed the protein to achieve a protease-resistant form on the cell surface, could be substituted by protease inhibitors such as antipain, leupeptin or 1,10-phenanthroline. Our data can be explained by a biparous mechanism in which divalent cations regulate both expression of the lipA gene and accumulation of the gene product.Abbreviations LIP light-inducible protein - BAPTA 1,2-bis(o-aminophenoxy)ethanc-N,N,N,N-tetraacetic acid  相似文献   

8.
The effects of phosphorus, Zn2+, CO2, and light intensity on growth, biochemical composition, and the activity of extracellular carbonic anhydrase (CA) in Isochrysis galbana were investigated. A significant change was observed when the concentration of phosphorus in the medium was increased from 5 μmol/L to 1000 μmol/L affecting I. galbana’s cell density, biochemical composition, and the activity of extracellular CA. Phosphorous concentration of 50 μmol/L to 500 μmol/L was optimal for this microalgae. The Zn2+ concentration at 10 μmol/L was essential to maintain optimal growth of the cells, but a higher concentration of Zn2+ (≥ 1000 μmol/L) inhibited the growth of I. galbana. High CO2 concentrations (43.75 mL/L) significantly increased the cell densities compared to low CO2 concentrations (0.35 mL/L). However, the activity of extracellular CA decreased significantly with an increasing concentration of CO2. The activity of extracellular CA at a CO2 concentration of 43.75 mL/L was approximately 1/6 of the activity when the CO2 concentration was at 0.35 mL/L CO2. Light intensity from 4.0 mW/cm2 to 5.6 mW/cm2 was beneficial for the growth, biochemical composition and the activity of extracellular CA. The lower and higher light intensity was restrictive for growth and changed its biochemical composition and the activity of extracellular CA. These results indicate that phosphorus, Zn2+, CO2, and light intensity are important factors that impact growth, biochemical composition and the activity of extracellular CA in I. galbana.  相似文献   

9.
The gene encoding the extracellular neutral metalloprotease ShpI from Staphylococcus hyicus subsp. hyicus was cloned. DNA sequencing revealed an ORF of 1317 nucleotides encoding a 438 amino acid protein with Mr of 49698. When the cloned gene was expressed in Staphylococcus carnosus, a 42 kDa protease was found in the culture medium. The protease was purified from both S. carnosus (pCAshp1) and S. hyicus subsp. hyicus. The N-terminal amino acid sequences of the two proteases revealed that ShpI is organized as a pre-pro-enzyme with a proposed 26 amino acid signal peptide, a 75 amino acid hydrophilic pro-region, and a 337 amino acid extracellular mature form with a calculated Mr of 38394. The N-termini showed microheterogeneity in both host strains. ShpI had a maximum proteolytic activity at 55°C and pH 7.4–8.5. The protease, which had a low substrate specificity, could be inhibited by metal- and zinc-specific inhibitors, such as EDTA and 1,10-phenanthroline. Insensitivity to phosphoramidon separates ShpI from the thermolysin-like family. The conserved Zn2+ binding motif, the only homology to other proteases, and the reactivation of the apoenzyme by Zn2+, indicated that Zn2+ is the catalytic ion. Ca2+ very probably acts as a stabilizer. We also demonstrated the presence of a second extracellular protease in S. hyicus subsp. hyicus.  相似文献   

10.
Summary Accumulation of cobalt (60Co) by the estuarine microalgaChlorella salina has been characterized. At cobalt concentrations ranging over 3.125–100 M, a significant amount of cobalt was bound within 1 min. This was metabolism-independent and unaffected by incubation in light or dark conditions. This initial rapid phase of biosorption was followed by a slower phase of uptake which was apparently active and inhibited by incubation in the dark, or by the uncoupler dinitrophenol and the respiratory and photosynthetic inhibitor potassium cyanide in the light. For cells suspended in 10 mM Taps pH 8, cobalt biosorption followed a Freundlich adsorption isotherm. However, in the presence of 0.5 M NaCl, biosorption deviated from the Freundlich model because of competition by Na+. Cobalt biosorption was decreased by increasing concentrations of Na+, decreasing pH and the presence of Cs+, Li+, Rb+, Zn2+. Mn2+ and Sr2+ (added as chlorides). This was a result of competition between Co2+ and the other cations, including H+, for available binding sites on the cell wall and was confirmed by increased desorption of cobalt by solutions of low pH or high salinity. Increasing cell density resulted in increased removal of cobalt from solution but decreased the specific amount of cobalt taken up by the cells.  相似文献   

11.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

12.
13.
Two non mitochondrial systems involved in ATP-dependent Ca2+ accumulation have been described and characterized in two membrane fractions from pea internodes purified on a metrizamide-sucrose discontinuous gradient. In the lighter membrane fraction an ATP-dependent Ca2+ accumulation system, which shows the characteristics of an ATP-dependent H+/Ca2+ antiport, predominates. This system is inhibited by FCCP and nigericin and stimulated by 50 mM KCl. It is saturated by 0.8–1.0 mM MgSO4-ATP, strictly requires ATP and is severely inhibited by an excess of free Mg2+ or Mn2+. A second system of ATP-dependent Ca2+ accumulation, recovered mainly in the heavier membrane fraction, is insensitive to FCCP, is saturated by 8–10 mM MgSO4-ATP, can utilize also ITP or other nucleoside triphosphates although at lower rate than ATP and is only scarcely affected by an excess of free Mg2+ or Mn2+. This system is interpreted as corresponding to the (Ca2+ + Mg2+)-ATPase described by Dieter, P. and Marmé, D. ((1980) Planta 150, 1–8).  相似文献   

14.
The alkaline phosphatase (EC 3.1.3.1.) from Rhizobium leguminosarum WU235 has been purified. The enzyme is a non-specific phosphomonoesterase, has a molecular weight of 78,500 and a sub-unit molecular weight of 39,400. Magnesium and zinc ions are implicated in the structure of the enzyme; atomic absorption analysis gave 1.9 g-atoms Mg2+ and 1.9–5.1 g-atoms Zn2+ per mole of enzyme. In addition high concentrations of Mg2+ markedly stimulate the enzyme. The phosphatase is inhibited by Li+ and Na+ and stimulated by K+, Rb+ and Cs+, which suggests that the enzyme is K+ activated.  相似文献   

15.
There is now a wealth of information regarding the apoptotic mode of cell death and its importance in toxicological studies in many mammalian organs including the liver. In this study, we investigated the modulatory effects of the heavy metal Zn2+ on transforming growth factor-β1 (TGF-β1)-induced apoptosis in primary rat hepatocytes. Apoptosis induced by TGF-β1 (1 ng/ml) in hepatocytes was accompanied by nuclear condensation as assessed morphologically by staining with Hoechst 33258 and DNA cleavage as detected biochemically by in situ end-labeling, field inversion and conventional gel electrophoresis. Pretreatment with 100 μmol/L Zn2+ abrogated the nuclear condensation, in situ end-labeling, and DNA laddering in TGF-β1-treated hepatocytes. Surprisingly, Zn2+ did not inhibit the formation of high-molecular-weight DNA fragments (30–50 kbp to 250–300 kbp). These data provide evidence that Zn2+ exerts its effects on the endonucleases that act downstream in the execution phase of TGF-β1-induced apoptosis in hepatocytes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Several studies have shown intracellular Zn2+ release and concomitant cell death after prolonged exposure to exogenous NO. In the present study, we investigated whether cortical neurons briefly exposured to exogenous NO would demonstrate similar levels of intracellular Zn2+ release and subsequent cell death. Cortical neurons were loaded with the Zn2+ selective fluorophore FluoZin-3 and treated with various concentrations of the NO generator, spermine NONOate. Fluorescence microscopy was used to detect and quantify intracellular Zn2+ levels. Concomitant EDTA perfusion was used to eliminate potential effects of extracellular Zn2+. Neurons were perfused with the heavy metal chelator TPEN to selectively eliminate Zn2+ induced fluorescence changes. A significant increase of intracellular fluorescence was detected during a 5 min perfusion with spermine NONOate. The increase in intracellular Zn2+ release appeared to peak at 1 μM spermine NONOate (123.8 ± 28.5%, increase above control n = 20, P < 0.001). Further increases in spermine NONOate levels as high as 1 mM failed to further increase detectable intracellular Zn2+ levels. The NO scavenger hemoglobin blocked the effects of spermine NONOate and the inactive analog of the spermine NONOate, spermine, was without effect. No evidence of cell death induced by any of the brief treatments with exogenous NO was observed; only prolonged incubation with much larger amounts of exogenous NO resulted in significant cell death. These data suggest that in vivo release of NO may cause elevations of intracellular Zn2+ in cortical neurons. The possibility that release of intracellular Zn2+ in response to NO could play a role in intracellular signaling is discussed.  相似文献   

17.
The first step in attachment of Rhizobiaceae cells to plant root hair tips is mediated by a Ca2+-dependent, Ca2+-binding protein, rhicadhesin. The possible role of Ca2+ in synthesis, anchoring and activity of rhicadhesin was investigated. Growth of Rhizobium leguminosarum biovar viciae cells under Ca2+-limitation was found to result in loss of attachment ability. Under these conditions, rhicadhesin could not be usolated from the bacterial cell surface, but was found to be excreted in the growth medium. Divalent ions appeared to be essential for the ability of purified rhicadhesin to inhibit attachment of R. leguminosarum biovar viciae cells to pea root hair tips. Calcium ions were found not to be involved in binding of rhicadhesin to the plant surface, but appeared to be involved in anchoring of the adhesin to the bacterial cell surface. A model for the role of Ca2+ in activity of rhicadhesin is presented.  相似文献   

18.
Structures of many metal-binding proteins are often obtained without structural cations in their apoprotein forms. Missing cation coordinates are usually updated from structural templates constructed from many holoprotein structures. Such templates usually do not include structural water, the important contributor to the ion binding energy. Structural templates are also inconvenient for taking into account structural modifications around the binding site at apo-/holo- transitions. An approach based upon statistical potentials readily takes into account structural modifications associated with binding as well as contribution of structural water molecules. Here, we construct a set of statistical potentials for Mg2+, Ca2+, and Zn2+ contacting with protein atoms of a different type or structural water oxygens. Each type of the cations tends to form tight contacts with protein atoms of specific types. Structural water contributes relatively more into the binding pseudo-energy of Mg2+ and Ca2+ than of Zn2+. We have developed PIONCA (Protein-Ion Calculator), a fast CUDA GPGPU-based algorithm that predicts ion-binding sites in apoproteins. Comparative tests demonstrate that PIONCA outperforms most of the tools based on structural templates or docking. Our software can be also used for locating bound cations in holoprotein structures with missing cation heteroatoms. PIONCA is equipped with an interactive web interface based upon JSmol.  相似文献   

19.
Removal of heavy metals (Pb2+, Zn2+) from aqueous solution by dried biomass of Spirulina sp. was investigated. Spirulina rapidly adsorbed appreciable amount of lead and zinc from the aqueous solutions within 15 min of initial contact with the metal solution and exhibited high sequestration of lead and zinc at low equilibrium concentrations. The specific adsorption of both Pb2+ and Zn2+ increased at low concentration and decreased when biomass concentration exceeded 0.1 g l−1. The binding of lead followed Freundlich model of kinetics where as zinc supported Langmuir isotherm for adsorption with their r 2 values of 0.9659 and 0.8723 respectively. The adsorption was strongly pH dependent as the maximum lead biosorption occurred at pH 4 and 10 whereas Zn2+ adsorption was at pH 8 and 10.  相似文献   

20.
Essential metal ion homeostasis is based on regulated uptake of metal ions, both during its scarcity and abundance.Pseudomonas putida strain S4, a multimetal resistant bacterium, was employed to investigate Ni2+ entry into cells. It was observed that Mg2+ regulates the entry of Ni2+ and by this plays a protective role to minimize Ni2+ toxicity in this strain. This protection was evident in both growth as well as viability. Intracellular accumulation of Ni2+ varied in accordance with Mg2+ concentrations in the medium. It was hypothesized that Ni2+ enters the cell using a broad Mg2+ pump, i.e. the CorA system, as the CorA inhibitor, i.e. Co(III) Hex, also inhibits Ni2+ uptake. This led to the inference that Mg2+-based protection was basically due to competitive inhibition of Ni2+ uptake. We also show that Zn2+ can further regulate the entry of Ni2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号