首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Examination of direct and (Cu)-difference spectra of i) the aqueous supernatants of in vitro cultures of bovine rumen contents incubated with MoO42- and potential sources of S2- and ii) samples drawn directly from the rumen of animals receiving high Mo diets yielded evidence of the presence of thiomolybdates. Only MoS42- was detected in the soluble phase of in vitro cultures. Although intense and variable background absorbance precluded full characterization of thiomolybdate species in samples drawn directly from the rumen, both spectral data and the biochemical and clinical responses of animals given high Mo diets were consistent with the conclusion that MoS42- rather than MoOS32- was the predominant thiomolybdate species present in the aqueous phase. Addition of Ca2+ either to rumen cultures before incubation or as a supplement to diets high in MoO42- content inhibited the appearance of MoS42- in the aqueous phase. Evidence of the sequestration of MoS42- and MoOS32- by particulate or microbial fractions of rumen contents is considered in relation to the inhibitory action of Mo upon Cu absorption by ruminants.  相似文献   

2.
AIMS: To investigate biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria, and to identify the fungus with the fastest biohydrogenation rate. METHODS AND RESULTS: Biohydrogenation of linoleic acid by mixed rumen fungi and mixed rumen bacteria were compared in vitro. With mixed rumen bacteria, all biohydrogenation reactions were finished within 100 min of incubation and the end product of biohydrogenation was stearic acid. With mixed rumen fungi, biohydrogenation proceeded more slowly over a 24-h period. Conjugated linoleic acid (CLA; cis-9, trans-11 C18 : 2) was an intermediate product, and vaccenic acid (VA; trans-11 C18 : 1) was the end product of biohydrogenation. Fourteen pure fungal isolates were tested for biohydrogenation rate. DNA sequencing showed that the isolate with the fastest rate belonged to the Orpinomyces genus. CONCLUSIONS: It is concluded that rumen fungi have the ability to biohydrogenate linoleic acid, but biohydrogenation is slower in rumen fungi than in rumen bacteria. The end product of fungal biohydrogenation is VA, as for group A rumen bacteria. Orpinomyces is the most active biohydrogenating fungus. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first study to demonstrate that rumen fungi can biohydrogenate fatty acids. Fungi could influence CLA content of ruminant products.  相似文献   

3.
Serology of rumen bacteroides   总被引:5,自引:0,他引:5  
  相似文献   

4.
-Fructofuranosidase of rumen protozoa   总被引:3,自引:0,他引:3  
  相似文献   

5.
6.
7.
Molecular diversity of rumen bacteria belonging to the species Selenomonas ruminantium was evaluated by biochemical and PCR analyses targeted at the 16S rRNA operon and lactate dehydrogenase gene. While extremely variable in metabolic characteristics, two different RISA (ribosomal intergenic spacer analysis), and five lactate dehydrogenase gene RFLP profiles were observed among the twelve strains studied. The strains showed very limited variability ARDRA ( amplified ribosomal DNA restriction analysis) when two different profiles were observed only. 16S rDNA sequence comparisons indicate complex genetic structure within S.ruminantium population.  相似文献   

8.
Intact, metabolically active rumen protozoa prepared by gravity sedimentation and washing in a mineral solution at 10 to 15 degrees C had comparatively low proteolytic activity on azocasein and low endogenous proteolytic activity. Protozoa washed in 0.1 M potassium phosphate buffer (pH 6.8) at 4 degrees C and stored on ice autolysed when they were warmed to 39 degrees C. They also exhibited low proteolytic activity on azocasein, but they had a high endogenous proteolytic activity with a pH optimum of 5.8. The endogenous proteolytic activity was inhibited by cysteine proteinase inhibitors, for example, iodoacetate (63.1%) and the aspartic proteinase inhibitor, pepstatin (43.9%). Inhibitors specific for serine proteinases and metalloproteinases were without effect. The serine and cysteine proteinase inhibitors of microbial origin, including antipain, chymostatin, and leupeptin, caused up to 67% inhibition of endogenous proteolysis. Hydrolysis of casein by protozoa autolysates was also inhibited by cysteine proteinase inhibitors. Some of the inhibitors decreased endogenous deamination, in particular, phosphoramidon, which had little inhibitory effect on proteolysis. Protozoal and bacterial preparations exhibited low hydrolytic activities on synthetic proteinase and carboxypeptidase substrates, although the protozoa had 10 to 78 times greater hydrolytic activity (per milligram of protein) than bacteria on the synthetic aminopeptidase substrates L-leucine-p-nitroanilide, L-leucine-beta-naphthylamide, and L-leucinamide. The aminopeptidase activity was partially inhibited by bestatin. It was concluded that cysteine proteinases and, to a lesser extent, aspartic proteinases are primarily responsible for proteolysis in autolysates of rumen protozoa. The protozoal autolysates had high aminopeptidase activity; low deaminase activity was observed on endogenous amino acids.  相似文献   

9.
10.
Bacterial species of the rumen   总被引:28,自引:0,他引:28  
  相似文献   

11.
Three strains of rumen treponemes were isolated and partially characterized. The strains differed significantly one from another in morphology, fermentation characteristics and plasmid profiles. Their genetic variability was assayed using DNA-based molecular approaches. Easily differentiated ARDRA (amplified ribosomal DNA restriction analysis) patterns indicated that the strains represent different bacterial species.  相似文献   

12.
13.
The effect of rumen microbes on six mycotoxins (aflatoxin B1, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol ) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol . The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin alpha and phenylalanine; zearalenone was reduced to alpha-zearalenol and to a lesser degree to beta-zearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin alpha in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.  相似文献   

14.
15.
ABSTRACT: The rumen is one of the most complicated and most fascinating microbial ecosystems in nature. A wide variety of microbial species, including bacteria, fungi and protozoa act together to bioconvert (ligno)cellulosic plant material into compounds, which can be taken up and metabolized by the ruminant. Thus, the rumen perfectly resembles a solution to a current industrial problem: the biorefinery, which aims at the bioconversion of lignocellulosic material into fuels and chemicals. We suggest to intensify the studies of the ruminal microbial ecosystem from an industrial microbiologists point of view in order to make use of this rich source of organisms and enzymes.  相似文献   

16.
17.
18.
The rumen anaerobic fungi   总被引:6,自引:0,他引:6  
The anaerobic fungi represent a new group of organisms inhabiting the rumen ecosystem and possess a life cycle alternating between a motile flagellated form (zoospore) and a non-motile vegetative reproductive form (thallus). In vivo studies show extensive colonization of plant material suspended in the rumen indicating the fungi have a role in fiber digestion. Pure cultures of anaerobic fungi ferment cellulose to give lactate, acetate, CO2 and H2 as the major products. Ethanol and formate may also be produced. Fermentation of cellulose by the fungi in coculture with H2-utilizing methanogens results in a shift in the fermentation pattern favouring the production of H2 (utilized in the formation of CH4) and acetate at the expense of the electron-sink products, lactate and ethanol. It is postulated that the methanogens in reducing the partial pressure of H2, facilitate an increased passage of reducing equivalents towards the production of H2 via a pyridine-nucleotide (PN)-linked hydrogenase reaction. H2 is believed to be produced in microbodies of the fungi called hydrogenosomes which possess all of the enzymes necessary for this function including PN-linked hydrogenase. Absence of mitochondria and key electron transport components in these organisms indicate a dependence wholly on fermentative processes for growth. Anaerobic fungi also participate in hemicellulose and starch degredation but it is not yet clear whether they have a role in the degradation of lignin. Simple sugars (mono- and disaccharides) are readily utilized and their uptake is subject to similar regulatory constraints such as is found with other micro-organisms.Enzymological studies have revealed that anaerobic fungi release substantial amounts of endo-acting cellulase and protease, possibly giving them a competitive advantage over rumen bacteria in the degradation of plant structural material.  相似文献   

19.
The present study gives a critique of the mechanisms involved with the formation of volatile fatty acid (VFA) formed in the lumen of the reticulo-rumen, the absorption of VFA across the reticulo-rumen wall, and the intra-epithelial metabolism of VFA by reticulo-rumen epithelium. In contrast to the empirical treatment of these aspects in previous rumen modelling studies, a mechanistic model was developed which represents each of these aspects separately. Because tissues of the reticulo-rumen may strongly adapt to changing nutritional conditions, this adaptive response was included in the model. The model enabled an evaluation of the implications of VFA yield on the development of the rumen wall, on the transport of VFA, on the extent of intra-epithelial metabolism of VFA, and on the consequences for the supply of VFA to the ruminant. The current modelling effort allowed the integration of existing knowledge on each of these aspects and the model reproduced some essential characteristics of experimental observations on VFA absorption and metabolism. Although further development is still needed, the model appears helpful to distinguish elements that require specific consideration when evaluating rates of net portal appearance of VFA, or when testing hypothesis on the interaction between formation, absorption and intra-epithelial metabolism of VFA under various experimental conditions.  相似文献   

20.
The effect ofO-ethyl-S-(2-diisopropylaminoethyl) methylthiophosphonate on rumen bacteria and rumen protozoa was investigated in sheep (after premedication with clinoptilolite-rich zeolite and without that premedication). In control animals a decrease in the total concentration of rumen protozoa was observed 3–7 d after intoxication (particularly in small and large ones). In clinoptilolite-rich-zeolite-treated animals only a slight decrease in protozoan numbers occurred during the first hours after the intoxication. Similarly, in every category of rumen bacteria marked differences between the groups were recorded, particularly in concentration of lipolytic bacteria. The results suggest some protective effect of clinoptilolite-rich zeolite for rumen microbiota against the organophosphate poison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号