首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA strand specificity in promoter recognition by RNA polymerase.   总被引:7,自引:3,他引:4       下载免费PDF全文
C S Park  Z Hillel    C W Wu 《Nucleic acids research》1980,8(23):5895-5912
DNA strand and enzyme subunit specificities involved in the interaction between E. coli RNA polymerase and T7 DNA were studied by photo-crosslinking techniques. In non-specific enzyme-DNA complexes, subunits, sigma, beta, and beta' were crosslinked to both strands of the DNA. Under conditions leading to specific enzyme-promoter complexes, however, only sigma and beta subunits were crosslinked. The sigma subunit was crosslinked preferentially to the non-sense strand at promoter sites. No such strand specificity was observed for the beta subunit. These results provide insight into the molecular mechanism of promoter recognition and indicate that the interaction between RNA polymerase and DNA template is different at promoters and at non-specific sites.  相似文献   

2.
We analysed complexes formed during recognition of the lacUV5 promoter by E. coli RNA polymerase using formaldehyde as a DNA-protein and protein-protein cross-linking reagent. Most of the cross-linked complexes specific for the open complex (RPO) contain the beta' subunit of RNA polymerase cross-linked with promoter DNA in the regions: -50 to -49; -5 to -10; + 5 to +8 and +18 to +21. The protein-protein cross-linking pattern of contacting subunits is the same for the RNA polymerase in solution and in RPO: there are strong sigma-beta' and beta-beta' interactions. In contrast, only beta-beta' cross-links were detected in the closed (RPC) and intermediate (RPI) complexes. In presence of lac repressor before or after formation of the RPO cross-linking pattern is similar with that of RPI (RPC) complex.  相似文献   

3.
4.
Complexes between Bacillus subtilus RNA polymerase and 32P-labeled DNA were irradiated with UV light and digested with nuclease; electrophoresis and autoradiography were used to identify the polymerase subunits cross-linked to DNA. These experiments showed: 1) that cross-linkage of promoter complexes yielded predominantly the beta and sigma subunits; 2) that beta, beta', and sigma were detected in non-promoter complexes; 3) that addition of the delta subunit or high concentrations of NaCl decreased cross-linkage of all subunits, especially the cross-linkage of the sigma subunit in non-promoter complexes and the binding of polymerase at DNA ends; 4) that different patterns of cross-linkage were obtained at 0 degrees C (conditions favoring the formation of closed complexes) and 37 degrees C (conditions favoring the formation of open complexes); and 5) predominantly beta and possibly alpha were cross-linked by irradiation of core-DNA complexes whereas similar experiments with core-delta complexed to DNA showed the efficient cross-linkage of beta' and beta.  相似文献   

5.
6.
7.
The interaction of RNA polymerases from Escherichia coli and Thermus aquaticus with lacUV5 promoter was studied at various temperatures. Using DNA-protein cross-linking induced by formaldehyde, it was demonstrated that each RNA polymerase formed a unique pattern of contacts with DNA in the open promoter complex. In the case of E. coli RNA polymerase, beta and sigma subunits were involved into formation of cross-links with the promoter, whereas in the case of T. aquaticus RNA polymerase its beta subunit formed the cross-links with the promoter. A cross-linking pattern in promoter complexes of a hybrid holoenzyme comprised of the core-enzyme of E. coli and sigma subunit of T. aquaticus was similar to that of the E. coli holoenzyme. This suggests that DNA-protein contacts in the promoter complex are primarily determined by the core-enzyme of RNA polymerase. However, temperature-dependent behavior of contact formation is determined by the sigma subunit. Results of the present study indicate that the method of formaldehyde cross-linking can be employed for elucidation of differences in the structure of promoter complexes of RNA polymerases from various bacteria.  相似文献   

8.
9.
Yamada M  Nishikimi A 《FEBS letters》1999,454(1-2):71-74
The promoter recognition site on the sigma70 initiation factor is shielded from interaction with DNA unless sigma70 is bound to the core component of RNA polymerase (RNAP). It is shown that interaction of sigma70 with the isolated beta' subunit of Escherichia coli RNAP is sufficient to induce unshielding of the DNA binding site. Using UV-induced DNA-protein cross-linking we demonstrate that free beta' stimulates specific cross-links between region 2 of the sigma70 polypeptide and a fragment of the non-template promoter strand containing the TATAAT sequence. Thus the sigmabeta' subassembly of RNAP can assume a functionally competent conformation independently of the bulk of the RNAP core.  相似文献   

10.
11.
12.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

13.
14.
15.
16.
M Okada  J Vergne    J Brahms 《Nucleic acids research》1978,5(6):1845-1862
E. Coli RNA polymerase binding to different DNAs (from E. Coli, 5-bromodeoxyuridine (BrdUrd) substituted DNA and poly [d(BrU-A)] was induced with ultraviolet (U.V.) light to form protein-DNA crosslinked complexes. Two independent methods of analysis, polyacrylamide gel electrophoresis in SDS and chloroform extraction indicated the formation of a stable complex between the enzyme and DNA. The complexes were formed under different ionic strength conditions, at low enzyme to DNA ratios in order to approach the conditions of specific binding. In contrast there was no crosslinking of the complex in 1 M KCl solution which dissociates the enzyme from DNA. The efficiency of formation of strongly bound complex was found to be much higher with holoenzyme than with core enzyme. The following results were obtained : 1) The large subunits beta and beta' were found to be bound to DNA. 2) Relatively small amount of sigma subunit were bound to DNA while alpha subunits were essentially not attached to DNA. The high binding affinity of beta and beta' subunits was also observed in the studies of isolated subunits. These results lead to a model of enzyme-DNA complex in which the large beta and beta' subunits provide the contacts between the RNA polymerase and the DNA.  相似文献   

17.
Stalled elongation complexes of Escherichia coli RNA polymerase were prepared carrying the photo-cross-linkable 8-azido derivative of adenine at the 3'-terminus of the nascent RNA chain. Ultraviolet irradiation of such complexes resulted in the cross-linking of radiolabeled RNA exclusively to the beta' subunit of RNA polymerase. The adduct was mapped between Met932 and Trp1020 in the linear sequence of the beta' polypeptide using specific chemical degradation of the cross-linked species.  相似文献   

18.
6S RNA regulates E. coli RNA polymerase activity   总被引:13,自引:0,他引:13  
Wassarman KM  Storz G 《Cell》2000,101(6):613-623
The E. coli 6S RNA was discovered more than three decades ago, yet its function has remained elusive. Here, we demonstrate that 6S RNA associates with RNA polymerase in a highly specific and efficient manner. UV crosslinking experiments revealed that 6S RNA directly contacts the sigma70 and beta/beta' subunits of RNA polymerase. 6S RNA accumulates as cells reach the stationary phase of growth and mediates growth phase-specific changes in RNA polymerase. Stable association between sigma70 and core RNA polymerase in extracts is only observed in the presence of 6S RNA. We show 6S RNA represses expression from a sigma70-dependent promoter during stationary phase. Our results suggest that the interaction of 6S RNA with RNA polymerase modulates sigma70-holoenzyme activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号