首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlorpyrifos (CP) is one of the most commonly applied insecticides for control of pests and insects. The inappropriate use of this kind of chemicals has caused heavy contamination of many terrestrial and aquatic ecosystems thus representing a great environmental and health risk. The main purpose of this work is to investigate novel microbial agents (Pseudomonas stutzeri and the previously obtained consortium LB2) with the ability to degrade CP from polluted effluents. This goal was achieved by operating at different lab scales (flask and bioreactor) and operation modes (batch and fed-batch). Very low degradation and biomass levels were detected in cultures performed with the consortium LB2. In contrast, near complete CP degradation was reached by P. stutzeri at the optimal conditions in less than 1 month, showing a depletion rate of 0.054 h?1. The scale-up at bench scale stirred tank bioreactor allowed improving the specific degradation rate in ten folds and total CP degradation was obtained after 2 days. Moreover, biomass and biodegradation profiles were modelled to reach a better characterization of the bioremediation process.  相似文献   

2.
Chlorpyrifos is a commonly used organophosphate pesticide. Its extensive use and associated serious soil and water contamination have gained increasing environmental concern. Biodegradation is a promising way to remediate chlorpyrifos contamination. There are many reports on various chlorpyrifos degrading microorganisms, but only a few on biodegradation of chlorpyrifos by consortia. Hence, the present study attempted to assemble a novel bacterial consortium C5 for the biodegradation of chlorpyrifos. The 16S rRNA gene-based molecular analysis revealed that the bacterial consortium consisted of Staphylococcus warneri CPI 2, Pseudomonas putida CPI 9 and Stenotrophomonas maltophilia CPI 15. Optimization of chlorpyrifos degradation by the consortium C5, using a Box–Behnken design, was carried out taking into account four important variables: temperature, pH, the initial concentration of chlorpyrifos and time of incubation. C5 is capable of giving 90% degradation of chlorpyrifos (125 ppm) in 8 days of incubation under optimized conditions of pH (7) and temperature (30°C). Growth curve and degradation study under optimized conditions confirmed that consortium could improve the biodegradation potential. From these results, we conclude that the novel consortium C5 of three species can be used to eliminate chlorpyrifos from various environmental compartments and can be implemented in bioreactors in a cost-effective, safe and environmentally friendly manner.  相似文献   

3.
This study describes the biodegradation of phenanthrene in aqueous media in the presence and in the absence of a surfactant, Brij 30. Biodegradations were performed using either Pseudomonas putida DSMZ 8368 or a bacterial consortium Pyr01 isolated from one PAHs-polluted site. P. putida degraded phenanthrene to form 1-hydroxy-2-naphthoic acid (1H2Na) as the major metabolite. LC–MS analysis revealed the production of complementary intermediates in the presence of Brij 30, showing intense ions at mass-to-charge ratios (m/z) 97 and 195. Higher phenanthrene biodegradation rate was obtained in the presence of Brij 30. Conversely, in the case of Pyr01consortium, the addition of Brij 30 (0.5 g L−1) had a negative effect on biodegradation: no phenanthrene biodegradation products were detected in the medium, whereas a production of several intermediates (m/z 97, 195 and 293) was obtained without surfactant. New results on phenanthrene metabolism by P. putida DSMZ 8368 and Pyr01 consortium in the presence and in the absence of Brij 30 we obtained. They confirm that the knowledge of the effect of a surfactant on bacterial cultures is crucial for the optimization of surfactant-enhanced PAHs biodegradation.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-012-0265-z) contains supplementary material, which is available to authorized users.  相似文献   

4.
Thiabendazole (TBZ) is a persistent fungicide used in the post-harvest treatment of fruits. Its application results in the production of contaminated effluents which should be treated before their environmental discharge. In the absence of efficient treatment methods in place, biological systems based on microbial inocula with specialized degrading capacities against TBZ could be a feasible treatment approach. Only recently the first bacterial consortium able to rapidly transform TBZ was isolated. This study aimed to characterize its biodegradation, bioremediation and detoxification potential. The capacity of the consortium to mineralize 14C-benzyl-ring labelled TBZ was initially assessed. Subsequent tests evaluated its degradation capacity under various conditions (range of pH, temperatures and TBZ concentration levels) and relevant practical scenarios (simultaneous presence of other postharvest compounds) and its bioaugmentation potential in soils contaminated with increasing TBZ levels. Finally cytotoxicity assays explored its detoxification potential. The consortium effectively mineralized the benzoyl ring of the benzimidazole moiety of TBZ and degraded spillage level concentrations of the fungicide in aqueous cultures (750 mg L?1) and in soil (500 mg kg?1). It maintained its high degradation capacity in a wide range of pH (4.5–7.5) and temperatures (15–37 °C) and in the presence of other pesticides (ortho-phenylphenol and diphenylamine). Toxicity assays using the human liver cancer cell line HepG2 showed a progressive decrease in cytotoxicity, concomitantly with the biodegradation of TBZ, pointing to a detoxification process. Overall, the bacterial consortium showed high potential for future implementation in bioremediation and biodepuration applications.  相似文献   

5.
A fusant strain F14 with high biodegradation capability of phenanthrene was obtained by protoplast fusion between Sphingomonas sp. GY2B (GenBank DQ139343) and Pseudomonas sp. GP3A (GenBank EU233280). F14 was screened and identified from 39 random fusants by antibiotic tests, scanning electron microscope (SEM) and randomly amplified polymorphic DNA (RAPD). The result of SEM analysis demonstrated that the cell shape of fusant F14 different from parental strains. RAPD analysis of 5 primers generated a total of 70 bands. The genetic similarity indices between F14 and parental strains GY2B and GP3A were 27.9 and 34.6 %, respectively. F14 could rapidly degrade phenanthrene within 24 h, and the degradation efficiency was much better than GY2B and GP3A. GC–MS analysis of metabolites of phenanthrene degradation indicated F14 had a different degradation pathway from GY2B. Furthermore, the fusant strain F14 had a wider adaptation of temperatures (25–36 °C) and pH values (6.5–9.0) than GY2B. The present study indicated that fusant strain F14 could be an effective and environment-friendly bacterial strain for PAHs bioremediation.  相似文献   

6.
Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated.  相似文献   

7.
The effect of extractable humic substances (EHS) on the bioremediation of phenanthrene in a slurry phase was investigated using adapted microorganisms with polycyclic aromatic hydrocarbons (PAHs). Two concentrations of EHS were used: 150 and 30 mg/kg soil. The phenanthrene concentration was 500 mg/kg soil. The results showed that the trend of biodegradation was increased after four weeks retardation. These tests showed that humic compounds could overcome the bond between the soil and phenanthrene in the presence of the bacterial consortium. The bacterial density in the medium with EHS was about six-fold greater in magnitude than in the medium without the humic compounds. The chemical relationship between phenanthrene and the humic substances in the form of a phenanthrene-humic-soil complex or phenanthrene-humic is loosely associated and reversible. Therefore, after the initial inhibition by humic substances, the bioavailability of phenanthrene increases.  相似文献   

8.
This paper reports the tolerance and biodegradation of phenol by a heavy metal–adapted environmental bacterial consortium, known as consortium culture (CC). At the highest tolerable phenol concentration of 1200 mg/L, CC displayed specific growth rate of 0.04 h?1, phenol degradation rate of 6.11 mg L?1 h?1 and biomass of 8.45 ± 0.35 (log10 colony-forming units [CFU]/ml) at the end of incubation. Phenol was degraded via the ortho-cleavage pathway catalyzed by cathechol-1,2-dioxygenase with specific activity of 0.083 (µmol min?1 mg?1 protein). The different constituent bacterial isolates of CC preferentially grow on benzene, toluene, xylene, ethylbenzene, cresol, and catechol, suggesting a synergistic mechanism involved in the degradation process. Microtox assay showed that phenol degradation was achieved without producing toxic dead-end metabolites. Moreover, lead (Pb) and cadmium (Cd) at the highest tested concentration of 1.0 and 0.1 mg/L, respectively, did not inhibit phenol degradation by CC. Simultaneous metal removal during phenol degradation was achieved using CC. These findings confirmed the dual function of CC to degrade phenol and to remove heavy metals from a mixed-pollutant medium.  相似文献   

9.
In this study we investigated the phenanthrene degradation by a halophilic consortium obtained from a saline soil sample. This consortium, named Qphe, could efficiently utilize phenanthrene in a wide range of NaCl concentrations, from 1% to 17% (w/v). Since none of the purified isolates could degrade phenanthrene, serial dilutions were performed and resulted in a simple polycyclic aromatic hydrocarbon (PAH)-degrading culture named Qphe-SubIV which was shown to contain one culturable Halomonas strain and one unculturable strain belonging to the genus Marinobacter. Qphe-SubIV was shown to grow on phenanthrene at salinities as high as 15% NaCl (w/v) and similarly to Qphe, at the optimal NaCl concentration of 5% (w/v), could degrade more than 90% of the amended phenanthrene in 6 days. The comparison of the substrate range of the two consortiums showed that the simplified culture had lost the ability to degrade chrysene but still could grow on other polyaromatic substrates utilized by Qphe. Metabolite analysis by HPLC and GC–MS showed that 2-hydroxy 1-naphthoic acid and 2-naphthol were among the major metabolites accumulated in the Qphe-SubIV culture media, indicating that an initial dioxygenation step might proceed at C1 and C2 positions. By investigating the growth ability on various substrates along with the detection of catechol dioxygenase gene, it was postulated that the uncultured Marinobacter strain had the central role in phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.  相似文献   

10.
In published literature there are limited studies on the estimation of kinetic parameters of polycyclic aromatic hydrocarbons (PAHs) in soil. In addition, neither the kinetic studies were performed with Gram-positive bacteria nor conducted under non-indigenous condition in order to understand their removal performance. Thus, a mathematical model describing biodegradation of phenanthrene-contaminated soil by Corynebacterium urealyticum, bacterium isolated from municipal sludge, was developed in this study. The model includes three kinetic parameters that were determined using TableCurve 2D software, namely qmax (maximum substrate utilization rate per unit mass of bacteria), X (biomass concentration) and Ks (substrate concentration at one half the maximum substrate utilization rate). These parameters were evaluated and verified in five different initial phenanthrene concentrations. Highest degradation rate was determined to be 79.24 mg kg?1 day?1 at 500 mg kg?1 initial phenanthrene concentrations. This high concentration shows that bacteria perform better in contaminated sand compared to liquid media. High r2 values, ranging from 0.92 to 0.99, were obtained excluding 1000 mg/kg phenanthrene. The kinetic parameters, i.e., qmax and Ks, increased with the phenanthrene concentration and thus suggest that bacteria degrade at a higher degradation rate. This model successfully described the biodegradation profiles observed at different initial phenanthrene concentrations. The established model can be used to simulate the duration of phenanthrene degradation using only the value of the initial PAHs concentration.  相似文献   

11.
This study investigates the effect of Fenton reagent on the structure and function of a microbial consortium during the anaerobic degradation of hexachloroethane (HCA) and tetrachloroethene (PCE). Anaerobic biodegradation tests of HCA and PCE were performed in batch reactors using an anaerobic microbial consortium that had been exposed to Fenton reagent for durations of 0, 0.04, and 2 days and then allowed to recover for periods of 0, 3, and 7 days. The bacterial community structure was determined using culture-independent methods of 16S rRNA gene sequencing and automated ribosomal intergenic spacer analysis. Larger recovery periods partially restored the microbial community structure; however, the recovery periods did not restore the loss of ability to degrade HCA and PCE in cultures shocked for 0.04 days, and PCE in cultures shocked for 2 days. Overall the exposure to Fenton reagent had an impact on bacterial community structure with downstream effects on HCA and PCE degradation. This study highlights that the impacts of short- and long-term shocks on microbial community structure and function can be correlated using a combination of biodegradation tests and community structure analysis tools.  相似文献   

12.
Biodegradation of phenol has been investigated using a bacterial consortium consisting of two bacterial isolates; one of them used for the first time in phenol biodegradation. This consortium was isolated from activated sludge and identified as Providencia stuartii PL4 and Pseudomonas aeruginosa PDM (accession numbers KY848366 and MF445102, respectively). The degradation of phenol by this consortium was optimal at pH 7 with using 1500?mg?l?1 ammonium chloride as a nitrogen source. Interestingly, after optimizing the biodegradation conditions, this consortium was able to degrade phenol completely up to 1500?mg?l?1 within 58?h. The immobilization of this consortium on various supporting materials indicated that polyvinyl alcohol (PVA)-alginate beads and polyurethane foam (PUF) were more suitable for biodegradation process. The freely suspended cells could degrade only 6% (150?mg?l?1) of 2500?mg?l?1 phenol, whereas, the immobilized PVA-alginate beads and the immobilized PUF degraded this concentration completely within 120?h of incubation with degradation rates (q) 0.4839 and 0.5368 (1/h) respectively. Thus, the immobilized consortium of P. stuartii PL4 and P. aeruginosa PDM can be considered very promising in the treatment of effluents containing phenol.  相似文献   

13.
A soil sample collected underneath a sewage pipe of the west side of Yangpu refining factory in Haikou city, Hainan Province, China was inoculated in minimum medium supplemented with fluoranthene. After 8 enrichment cycles, a bacterial consortium (Y12) was obtained through water-silicone oil dual system in the laboratory. The consortium Y12 could degrade a mixture of polycyclic aromatic hydrocarbons (PAHs) including phenanthrene, anthracene, fluoranthene, pyrene and benzo[a]pyrene. The consortium Y12 was repeatedly cultured for more than 40 circles, from which a bacterial strain FB3 was isolated. This strain was identified as a Sphingobium sp. through the 16S rDNA sequence alignment. Strain FB3 could degrade 99 ± 0.4%, 67 ± 2%, 97 ± 3%, 72 ± 8%, and 6 ± 2% (uncorrected degradation percentages) of phenanthrene, anthracene, fluoranthene and pyrene each at level of 100 mg L−1 and benzo[a]pyrene at 10 mg L−1, respectively, in 10 days, which the five PAHs were the sole carbon source as a mixture in minimum medium. The degradation percentages of phenanthrene, anthracene, fluoranthene, pyrene (each at level of 100 mg L−1) and benzo[a]pyrene (10 mg L−1) by consortium Y12 were 99 ± 0.1%, 65 ± 3%, 99 ± 0.3%, 79 ± 1% and 7 ± 6%, respectively, in 10 days. Strain FB3 could degrade those PAHs under a range of pH 5–9, being optimum at pH 7.  相似文献   

14.
An enrichment culture method was applied to the isolation of a bacterial strain responsible for biodegradation of methidathion residues, from a methidathion-treated orchard. The strain (SPL-2) was identified as Serratia sp. according to its physiological characteristics and 16S rRNA gene phylogenetic analysis. Serratia sp. was able to grow in a poor medium consisting of mineral salts and using methidathion as the sole carbon source at a concentrations of 50–150 mg/L. The effects of multifactors on degradation of methidathion in pure cultures by Serratia sp. were investigated using an orthogonal experimental design L9 (34). On the basis of range analysis and ANOVA results, the most significant factors were temperature and inoculum size. The optimal conditions for methidathion biodegradation in pure cultures were a temperature in 30 °C, an inoculum size of 10 %, pH?=?7 and an aeration rate of 200 rpm. Two different concentrations of strain SPL-2 fermenting liquids (OD600?=?0.2 and OD600?=?0.4) were prepared and applied to remove methidathion residues from agricultural products, and this process can be described by a first order rate model. In contrast to controls, the DT50 of methidathion was shortened by 35.7 %, 8.2 % and by 62.3 %, 57.5 % on OD600?=?0.2 and OD600?=?0.4 treated haricot beans and peaches, respectively. These results suggest that the isolated bacterial strain may have potential for use in bioremediation of methidathion-contaminated crops.  相似文献   

15.
This study deals with the optimization of bacterial degradation of pyridine raffinate by previously isolated two aerobic bacteria ITRCEM1 (Bacillus cereus) and ITRCEM2 (Alcaligens faecalis) with accession number DQ4335020 and DQ435021, respectively. The degradation of pyridine raffinate was studied by axenic and mixed bacterial consortium at different nutritional and environmental conditions after the removal of formaldehyde from pyridine raffinate (FPPR). Results revealed that the optimum degradation of pyridine raffinate was observed by mixed bacterial culture in presence of glucose (1% w/v) and peptone (0.2% w/v) at 20% FPPR, pH 7.0, temperature 30°C and 120 rpm at 168 h incubation period . The HPLC analysis of degraded pyridine raffinate samples has indicated the complete removal of α, β and γ picoline. Further, the GC–MS analysis of FPPR pyridine raffinate has shown the presence of pyrazine acetonitrile (6.74), 1,3-dioxepin (8.68), 2-pyridine carboxaldehyde (11.26), propiolactone (12.06), 2-butanol (13.10), benzenesulfonic acid (16.22) and 1,4-dimethyl pyperadine while phenol (17.64) and 3,4-dimethyl benzaldehyde as metabolic products of FPPR.  相似文献   

16.
This study deals the biodegradation of the major color containing compounds extracted from distillery wastewater (DWW) by an aerobic bacterial consortium comprising Bacillus licheniformis (DQ79010), Bacillus sp. (DQ779011) and Alcaligenes sp. (DQ779012) and characterization of metabolic products. The degradation of color containing compounds by bacteria was studied by using the different carbon and nitrogen sources at different environmental conditions. Results revealed that the bacterial consortium was efficient for 70% color removal in presence of glucose (1.0%) and peptone (0.1%) at pH 7.0 and temperature 37°C. The HPLC analysis of control and bacterial degraded samples has shown the reduction in peak area as well as shifting of peaks compared to control indicating the bacterial degradation as well as transformation of color containing compounds from DWW. The comparative LC–MS–MS and other spectrophotometric analysis has shown the presence of dihydroxyconiferyl alcohol, 2, 2′-bifuran-5-carboxylic acid, 2-nitroacetophenone, p-chloroanisol, 2, 3-dimethyl-pyrazine, 2-methylhexane, methylbenzene, 2, 3-dihydro-5-methylfuran, 3-pyrroline, and acetic acid in control samples that were biodegraded and biotransformed into 2-nitroacetophenone, p-chloroanisol, 2, 2′-bifuran, indole, 2-methylhexane, and 2, 3-dihydro-5-methylfuran by bacterial consortium. In this study, it was observed that most of the compounds detected in control samples were diminished from the bacterial degraded samples and compounds 2, 2′-bifuran and indole with molecular weight 134 and 117 were produced as new metabolites during the bacterial degradation of color containing compounds from DWW.  相似文献   

17.
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. Although several PAH-degrading bacterial species have been isolated, it is not expected that a single isolate would exhibit the ability to degrade completely all PAHs. A consortium composed of different microorganisms can better achieve this. Two-liquid phase (TLP) culture systems have been developed to increase the bioavailability of poorly soluble substrates for uptake and biodegradation by microorganisms. By combining a silicone oil–water TLP system with a microbial consortium capable of degrading HMW PAHs, we previously developed a highly efficient PAH-degrading system. In this report, we characterized the bacterial diversity of the consortium with a combination of culture-dependent and culture-independent methods. Polymerase chain reaction (PCR) of part of the 16S ribosomal RNA gene (rDNA) sequences combined with denaturing gradient gel electrophoresis was used to monitor the bacterial population changes during PAH degradation of the consortium when pyrene, chrysene, and benzo[a]pyrene were provided together or separately in the TLP cultures. No substantial changes in bacterial profiles occurred during biodegradation of pyrene and chrysene in these cultures. However, the addition of the low-molecular-weight PAHs phenanthrene or naphthalene in the system favored one bacterial species related to Sphingobium yanoikuyae. Eleven bacterial strains were isolated from the consortium but, interestingly, only one—IAFILS9 affiliated to Novosphingobium pentaromativorans—was capable of growing on pyrene and chrysene as sole source of carbon. A 16S rDNA library was derived from the consortium to identify noncultured bacteria. Among 86 clones screened, 20 were affiliated to different bacterial species–genera. Only three strains were represented in the screened clones. Eighty-five percent of clones and strains were affiliated to Alphaproteobacteria and Betaproteobacteria; among them, several were affiliated to bacterial species known for their PAH degradation activities such as those belonging to the Sphingomonadaceae. Finally, three genes involved in the degradation of aromatic molecules were detected in the consortium and two in IAFILS9. This study provides information on the bacterial composition of a HWM PAH-degrading consortium and its dynamics in a TLP biosystem during PAH degradation.  相似文献   

18.
A halophilic bacterial consortium that degraded phenanthrene was developed from oil-contaminated saline soil containing 10% salinity. The biodegradation of phenanthrene occurred at 5%, 10%, and 15% salinity, whereas no biodegradation took place at 0.1% and 20% salinity. A 16S rRNA gene analysis showed that all sequences from the denaturing gradient gel electrophoresis profile were similar to those of halophilic bacteria. This is the first report of a halophilic bacterial consortium capable of degrading phenanthrene under hypersaline conditions.  相似文献   

19.
Repeated treatment with fenamiphos (ethyl 4-methylthio-m-tolyl isopropylphosphoramidate) resulted in enhanced biodegradation of this nematicide in two United Kingdom soils with a high pH (≥7.7). In contrast, degradation of fenamiphos was slow in three acidic United Kingdom soils (pH 4.7 to 6.7), and repeated treatments did not result in enhanced biodegradation. Rapid degradation of fenamiphos was observed in two Australian soils (pH 6.7 to 6.8) in which it was no longer biologically active against plant nematodes. Enhanced degrading capability was readily transferred from Australian soil to United Kingdom soils, but only those with a high pH were able to maintain this capability for extended periods of time. This result was confirmed by fingerprinting bacterial communities by 16S rRNA gene profiling of extracted DNA. Only United Kingdom soils with a high pH retained bacterial DNA bands originating from the fenamiphos-degrading Australian soil. A degrading consortium was enriched from the Australian soil that utilized fenamiphos as a sole source of carbon. The 16S rRNA banding pattern (determined by denaturing gradient gel electrophoresis) from the isolated consortium migrated to the same position as the bands from the Australian soil and those from the enhanced United Kingdom soils in which the Australian soil had been added. When the bands from the consortium and the soil were sequenced and compared they showed between 97 and 100% sequence identity, confirming that these groups of bacteria were involved in degrading fenamiphos in the soils. The sequences obtained showed similarity to those from the genera Pseudomonas, Flavobacterium, and Caulobacter. In the Australian soils, two different degradative pathways operated simultaneously: fenamiphos was converted to fenamiphos sulfoxide (FSO), which was hydrolyzed to the corresponding phenol (FSO-OH) or was hydrolyzed directly to fenamiphos phenol. In the United Kingdom soils in which enhanced degradation had been induced, fenamiphos was oxidized to FSO and then hydrolyzed to FSO-OH, but direct conversion to fenamiphos phenol did not occur.  相似文献   

20.
Aliphatic and aromatic hydrocarbons are environmental pollutants of serious concern. Their bioavailability is the major limiting factor that makes the bioremediation process slow. Therefore, the present study focuses on biodegradation of non-aqueous-phase liquids (NAPL) by a halophilic consortium (Pseudomonas aeruginosa and Escherichia fergusonii) in presence of rhamnolipid as well as a rhamnolipid-producing Pseudomonas aeruginosa AMB AS7. The study was performed in microcosms, and the residual hydrocarbons after degradation were estimated by gas chromatography. It was found that the degradation of hydrocarbons in NAPL was more in presence of rhamnolipid in comparison with their biotic controls. However, among NAPL, the degradation of phenanthrene (37.5%) and octadecane (47.8%) was found to be more by co-culture of halophilic consortium and rhamnolipid-producing P. aeruginosa AMB AS7. Denaturing gradient gel electrophoresis was performed to determine the viability of different bacterial strains (halophilic and rhamnolipid-producing bacterial strain). Besides, the results also revealed that during NAPL degradation, the cell surface hydrophobicity (CSH) of halophilic consortium increased from 9.12% to 69.55% when added with 100 mg/L of rhamnolipid, whereas CSH of rhamnolipid-producing P. aeruginosa AMB AS7 was constant at 31.9%, even though it produced about 271.8 mg/L of rhamnolipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号