首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Autophagy》2013,9(4):297-298
Autophagy is a major pathway for the degradation of long-lived proteins and cytoplasmic organelles and an essential part of programmed cell death, as well. Our findings indicate that programmed cell death of the ovarian follicle cells in the higher Diptera species Bactrocera oleae and Ceratitis capitata manifests features of autophagic cell death. The follicle cells during the developmental stage 14 contain autophagic vacuoles and they do not exhibit caspase activity in any area of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high—but not low—molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. The similarity of the cell death process among B. oleae, C. capitata and Drosophila melanogaster species strongly suggests that autophagy-mediated cell death is conserved in higher Diptera species.

Addendum to:

Programmed Cell Death of Follicular Epithelium during the Late Developmental Stages of Oogenesis in the Fruit Flies Bactrocera oleae and Ceratitis capitata (Diptera, Tephritidae) is Mediated by Autophagy

I.P. Nezis, D.J. Stravopodis, L.H. Margaritis and I.S. Papassideri

Dev Growth Differ 2006; 48:189-98  相似文献   

2.
In the present study, we describe the features of programmed cell death of ovarian follicle cells, occurring during the late developmental stages of oogenesis in the olive fruit fly, Bactrocera oleae and the medfly, Ceratitis capitata. During stage 14, the follicle cells contain autophagic vacuoles, and they do not exhibit caspase activity in all parts of the egg chamber. Their nuclei are characterized by condensed chromatin, accompanied with high- but not low-molecular weight DNA fragmentation events exclusively detected in distinct cells of the anterior pole. These data argue for the presence of an autophagy-mediated cell death program in the ovarian follicle cell layer in both species. The above results are likely associated with the abundant phagocytosis observed at the entry of the lateral oviducts, where numerous cell bodies are massively engulfed by epithelial cells. We strongly believe that during the termination of the above Dipteran oogenesis, an efficient mechanism of absorption of the degenerated follicle cells is selectively activated, in order to prevent the blockage of the ovarioles and thus robustly support the physiological completion of the ovulation process.  相似文献   

3.
In the present study, we describe novel features of programmed cell death in developing egg chambers occurring during mid- and late-oogenesis of the medfly Ceratitis capitata. During mid-oogenesis, the spontaneously degenerated egg chambers exhibit typical characteristics of apoptotic cell death. Their nurse cells contain fragmented DNA and fragmented actin, as revealed by TUNEL assay and immunolabelling, respectively. In vitro caspase activity assays and immunostaining procedures demonstrated that the atretic egg chambers acquired high levels of caspase activity. Distinct features of autophagic cell death were also observed during C. capitata mid-oogenesis, as revealed by the monodansylcadaverine staining approach and ultrastructural examination performed by transmission electron microscopy. Additionally, atretic egg chambers exhibit an upregulation of lysosomal proteases, as demonstrated by a procathepsin L immunolabelling procedure. At the late stages of C. capitata oogenesis, apoptosis and autophagy coexist, manifesting cell death features that are similar to the ones mentioned above, being also chaperoned by the involvement of an altered cytochrome c conformational display. We propose that apoptosis and autophagy operate synergistically during C. capitata oogenesis for a more efficient elimination of the degenerated nurse cells and abnormal egg chambers.  相似文献   

4.
Programmed cell death, constitutes a common fundamental incident that occurs during oogenesis in a variety of different animals. It plays a significant role in the maturation process of the female gamete and also in the removal of abnormal and superfluous cells at certain checkpoints of development. In the present study, we demonstrate the existence of follicular atresia during mid-oogenesis in the olive fruit fly Dacus oleae (Tephritidae). The number of atretic follicles increases following the age of the fly, suggesting for the presence of an age-susceptible process. The atretic follicles contain nurse cells that exhibit chromatin condensation, DNA fragmentation and actin cytoskeleton alterations, as revealed by propidium iodide staining, TUNEL labeling and phalloidin-FITC staining. Conventional light and electron microscopy disclose that the nurse cell remnants are phagocytosed by the adjacent follicle cells. The follicular epithelium also eliminates the oocyte through phagocytosis, resulting to an egg chamber with no compartmentalized organization. The data presented herein are very similar compared to previous reported results in other Diptera species, strongly suggesting the occurrence of a phylogenetically conserved mechanism of follicular atresia. All these observations also support the notion that mid-oogenesis in D. oleae may be the critical regulation point at which superfluous and defective egg chambers are selectively eliminated before they reach maturity.  相似文献   

5.
One of the major pests in Greek cherry orchards is the cherry fly Rhagoletis cerasi (Diptera: Tephritidae). In order to complete our comparative work on the chorion assembly of other representatives of the fruit flies (e.g. Ceratitis capitata and Dacus oleae) we studied eggshell morphogenesis in the cherry fly. The oocyte is surrounded by several distinct layers which are produced during choriogenesis. The eggshell consists of the vitelline membrane, a fibrous layer of possible water-proofing function, an innermost chorionic layer, endochorionic and exochorionic layers. The endochorion shows a branched configuration with irregular cavities, and the exochorion consists of inner and outer layers for better embryo protection. At the anterior region of the follicle, the hexagonal borders of the follicle cells are created by endochorionic material, covered by both inner and outer exochorion. This area resembles the D. melanogaster chorionic appendages and therefore can serve for plastron respiration. The structural results support the phylogenetic relationships among the tephritids (Rhagoletis is closer to Ceratitis than Dacus). The presence of peroxidase in the endochorion, detected by diaminobenzidine, is consistent with the eggshell hardening at the end of choriogenesis, following the same pattern with the other fruit flies studied so far. Two major chorionic proteins are found both in R. cerasi and in C. capitata and therefore general conclusions can be drawn from this study, concerning the pattern of choriogenesis, which all dipteran insects follow, in order to create a resistant and functional eggshell, and the high conservation of the proteinaceous components of the chorion among species in the order.  相似文献   

6.
The secondary metabolites present in the methanol extract of a Mucor hiemalis strain (SMU-21) mycelia, cultured in liquid medium, were evaluated for toxicity to Bactrocera oleae (Gmelin) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) adults. Feeding and contact bioassays revealed that the methanol fraction of the crude supernatant was strongly toxic to both species. Symptoms of toxicity developed quickly; lethargy occurred 1-2 h posttreatment, and mortality reached 82-97% after 24 h. Both feeding and contact bioassays showed that B. oleae was more susceptible than C. capitata. Concentrations producing 50% mortality (LC50) to B. oleae and C. capitata after 24 h in feeding bioassays were 0.52 and 1.28 mg/ 0.1 ml diet, respectively, but 34.8 and 64.0 microg/ cm2, respectively, after 4 h in contact bioassays. Solvent partition, precipitation, and chromatographic procedures were used to isolate the active principles from the crude supernatant. These resulted in the isolation of one high-pressure liquid chromatography fraction with insecticidal activity on B. oleae flies equal to the initial crude supernatant.  相似文献   

7.
Programmed cell death during plant growth and development   总被引:12,自引:0,他引:12  
This review describes programmed cell death as it signifies the terminal differentiation of cells in anthers, xylem, the suspensor and senescing leaves and petals. Also described are cell suicide programs initiated by stress (e.g., hypoxia-induced aerenchyma formation) and those that depend on communication between neighboring cells, as observed for incompatible pollen tubes, the suspensor and synergids in some species. Although certain elements of apoptosis are detectable during some plant programmed cell death processes, the participation of autolytic and perhaps autophagic mechanisms of cell killing during aerenchyma formation, tracheary element differentiation, suspensor degeneration and senescence support the conclusion that nonapoptotic programmed cell death pathways are essential to normal plant growth and development. Heterophagic elimination of dead cells, a prominent feature of animal apoptosis, is not evident in plants. Rather autolysis and autophagy appear to govern the elimination of cells during plant cell suicide.  相似文献   

8.
We identified a form of cell death called “liponecrosis.” It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death. Cells committed to liponecrotic death: (1) do not exhibit features characteristic of apoptotic cell death; (2) do not display plasma membrane rupture, a hallmark of programmed necrotic cell death; (3) akin to cells committed to necrotic cell death, exhibit an increased permeability of the plasma membrane for propidium iodide; (4) do not display excessive cytoplasmic vacuolization, a hallmark of autophagic cell death; (5) akin to cells committed to autophagic death, exhibit a non-selective en masse degradation of cellular organelles and require the cytosolic serine/threonine protein kinase Atg1p for executing the death program; and (6) display a hallmark feature that has not been reported for any of the currently known cell death modalities—namely, an excessive accumulation of lipid droplets where non-esterified fatty acids (including POA) are deposited in the form of neutral lipids. We therefore concluded that liponecrotic cell death subroutine differs from the currently known subroutines of programmed cell death. Our data suggest a hypothesis that liponecrosis is a cell death module dynamically integrated into a so-called programmed cell death network, which also includes the apoptotic, necrotic, and autophagic modules of programmed cell death. Based on our findings, we propose a mechanism underlying liponecrosis.  相似文献   

9.
In the present study, we demonstrate the existence of two distinct apoptotic patterns in nurse cells during Ceratitis capitata oogenesis. One is developmentally regulated and normally occurs during stages 12 and 13, and the other is stage specific and is sporadically observed during stages 7 and 8. The pre-apoptotic manifestation of the first pattern begins at stage 11 and is characterized by the formation of actin bundles. Subsequently, at stages 12 and 13, the nurse cell nuclei exhibit condensed chromatin and contain fragmented DNA, as revealed by TUNEL assay. The apoptotic nurse cell remnants are phagocytosed by the neighboring follicle cells at the end of oogenesis during stages 13 and 14. In the second apoptotic pattern, which occurs sporadically during stages 7 and 8, the nurse cells degenerate and are phagocytosed by the follicular epithelium that contains apoptotic cell bodies. The data presented herein, compared to previous reported results in Drosophila melanogaster and Dacus oleae (Nezis et al., 2000, 2001), strongly suggest that nurse cell apoptosis is a developmentally regulated and phylogenetically conserved mechanism in higher Dipteran. They also suggest that, the sporadic apoptotic pattern consists of a possible protective mechanism throughout oogenesis when damaged or abnormal egg chambers, are eliminated before they reach maturity.  相似文献   

10.
11.
It is increasingly recognized that programmed cell death includes not only apoptosis and autophagy, but also other types of nonapoptotic cell death, such as paraptosis, which are all characterized by distinct morphological features. Our findings indicate that all three types of programmed cell death occur in the ovarian nurse cell cluster during late vitellogenesis (formation of the egg yolk) of Bombyx mori (Lepidoptera), whereas middle vitellogenesis is exclusively characterized by the presence of a nonapoptotic type of cell death, known as paraptosis. During middle vitellogenesis, nurse cells exhibit clearly cytoplasmic vacuolization, as revealed by ultrastructural examination performed through conventional light and transmission electron microscopy, while no signs of apoptotic or autophagic features are detectable. Moreover, nurse cells of developmental stages 7, 8 and 9 contain autophagic compartments, as well as apoptotic characteristics, such as condensed chromatin, fragmented DNA and activated caspases, as revealed by in vitro assays. We propose that paraptosis precedes both apoptosis and autophagy during vitellogenesis, since its initial activation is detectable during middle vitellogenesis, whereas no apoptotic nor autophagic features are observed. In contrast, at the late stages of Bombyx mori oogenesis, paraptosis, autophagy and apoptosis operate synergistically, resulting in a more efficient elimination of the degenerated nurse cells.  相似文献   

12.
Lu B  Capan E  Li C 《Autophagy》2007,3(2):158-159
The population size of the T cells is tightly regulated. The T cell number drastically increases in response to their specific antigens. Upon antigen clearance, the T cell number decreases over time. Apoptosis, also called type I programmed cell death, plays an important role in eliminating T cells. The role of autophagic cell death, also called type II programmed cell death, is unclear in T cells. Our recent work demonstrated that autophagy is induced in both Th1 and Th2 cells. Both TCR signaling and IL-2 increase autophagy in T cells, and JNK MAP kinases are required for the induction of autophagy in T cells, whereas caspases and mTOR inhibit autophagy in T cells. Autophagy is required for mediating growth factor withdrawal-dependent cell death in T cells. Here, we hypothesize that autophagic cell death plays an important role in T cell homeostasis.  相似文献   

13.
Yu DJ  Xu L  Nardi F  Li JG  Zhang RJ 《Gene》2007,396(1):66-74
The complete mitochondrial genome of the oriental fruit fly Bactrocera dorsalis s.s. has been sequenced, and is here described and compared with the homologous sequences of Bactrocera oleae and Ceratitis capitata. The genome is a circular molecule of 15,915 bp, and encodes the set of 37 genes generally found in animal mitochondrial genomes. The structure and organization of the molecule is typical and similar to the two closely related species B. oleae and C. capitata, although it presents an interesting case of putative intra-molecular recombination. The relevance of the growing comparative dataset of tephritid complete mitochondrial genomes is discussed in relation to the possibility to develop robust assays for species discrimination in quarantine and agricultural monitoring practices, as well as basic phylogeography/population genetic studies.  相似文献   

14.
昆虫细胞程序性死亡的研究进展   总被引:3,自引:0,他引:3  
在昆虫发育和抵抗病原微生物的入侵过程中,细胞凋亡与自噬性死亡现象十分常见。昆虫细胞凋亡的研究已经取得了许多的成果,但是有关细胞自噬程序性死亡的研究还正在深入。昆虫细胞凋亡的信号通路至少有3条:一条类似于线虫细胞的凋亡信号通路,另一条类似于哺乳动物细胞的凋亡信号通路, 还有一条不依赖于胱天蛋白酶的凋亡信号通路。在昆虫的多种组织细胞中,细胞凋亡与自噬程序性死亡在信号通路上存在互串(cross talking),可以相互促进、抑制或替代。了解昆虫细胞程序性死亡对防治害虫具有一定的意义。  相似文献   

15.
16.
《Autophagy》2013,9(1):97-100
It is increasingly recognized that programmed cell death includes not only apoptosis and autophagy, but also other types of nonapoptotic cell death, such as paraptosis, which are all characterized by distinct morphological features. Our findings indicate that all three types of programmed cell death occur in the ovarian nurse cell cluster during late vitellogenesis (formation of the egg yolk) of Bombyx mori (Lepidoptera), whereas middle vitellogenesis is exclusively characterized by the presence of a nonapoptotic type of cell death, known as paraptosis. During middle vitellogenesis, nurse cells exhibit clearly cytoplasmic vacuolization, as revealed by ultrastructural examination performed through conventional light and transmission electron microscopy, while no signs of apoptotic or autophagic features are detectable. Moreover, nurse cells of developmental stages 7, 8 and 9 contain autophagic compartments, as well as apoptotic characteristics, such as condensed chromatin, fragmented DNA and activated caspases, as revealed by in vitro assays. We propose that paraptosis precedes both apoptosis and autophagy during vitellogenesis, since its initial activation is detectable during middle vitellogenesis, whereas no apoptotic nor autophagic features are observed. In contrast, at the late stages of Bombyx mori oogenesis, paraptosis, autophagy and apoptosis operate synergistically, resulting in a more efficient elimination of the degenerated nurse cells.

Addendum to: Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri IS. Programmed cell death of the ovarian nurse cells during oogenesis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419–28.  相似文献   

17.
Tanner EA  McCall K 《Autophagy》2011,7(7):793-794
Interactions between the Bcl-2 family proteins and the mitochondrial fission and fusion machinery regulate cell death in mammals and worms. In Drosophila, the Bcl-2 family proteins have not been shown to be major regulators of cell death. However, emerging evidence suggests that mitochondrial remodeling may be important in Drosophila cell death. We recently demonstrated a series of events that occur during follicle removal in the Drosophila ovary that included mitochondrial remodeling and clustering, followed by uptake and degradation in the follicle cells. Importantly, the Bcl-2 family proteins, mitochondrial dynamics, and autophagic proteins regulate these events.  相似文献   

18.
《Autophagy》2013,9(7):793-794
Interactions between the Bcl-2 family proteins and the mitochondrial fission and fusion machinery regulate cell death in mammals and worms. In Drosophila, the Bcl-2 family proteins have not been shown to be major regulators of cell death. However, emerging evidence suggests that mitochondrial remodeling may be important in Drosophila cell death. We recently demonstrated a series of events that occur during follicle removal in the Drosophila ovary that included mitochondrial remodeling and clustering, followed by uptake and degradation in the follicle cells. Importantly, the Bcl-2 family proteins, mitochondrial dynamics, and autophagic proteins regulate these events.  相似文献   

19.
《Autophagy》2013,9(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates

such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

20.
Shen HM  Codogno P 《Autophagy》2011,7(5):457-465
The concept of autophagic cell death was first established based on observations of increased autophagic markers in dying cells. The major limitation of such a morphology-based definition of autophagic cell death is that it fails to establish the functional role of autophagy in the cell death process, and thus contributes to the confusion in the literature regarding the role of autophagy in cell death and cell survival. Here we propose to define autophagic cell death as a modality of non-apoptotic or necrotic programmed cell death in which autophagy serves as a cell death mechanism, upon meeting the following set of criteria: (i) cell death occurs without the involvement of apoptosis; (ii) there is an increase of autophagic flux, and not just an increase of the autophagic markers, in the dying cells; and (iii) suppression of autophagy via both pharmacological inhibitors and genetic approaches is able to rescue or prevent cell death. In light of this new definition, we will discuss some of the common problems and difficulties in the study of autophagic cell death and also revisit some well-reported cases of autophagic cell death, aiming to achieve a better understanding of whether autophagy is a real killer, an accomplice or just an innocent bystander in the course of cell death. At present, the physiological relevance of autophagic cell death is mainly observed in lower eukaryotes and invertebrates such as Dictyostelium discoideum and Drosophila melanogaster. We believe that such a clear definition of autophagic cell death will help us study and understand the physiological or pathological relevance of autophagic cell death in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号