首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts.  相似文献   

2.
Serpins are serine protease inhibitors with a conserved structure that have been identified in nearly all species and act as suicide substrates by binding covalently to their target proteases. Serpins regulate various physiological processes and defence mechanisms. In humans, several serpin mutations are linked to diseases. The genome of Drosophila melanogaster encodes 29 serpins and even more serine proteases. To date, three serpins have been investigated in detail. Spn27A controls the Toll pathway during early development and is involved in defence reactions in adult flies. SPN42DaA is an inhibitor of furin, a subtilisin-like convertase that is required for pro-protein maturation. Spn43Ac controls the Toll pathway during the immune response. In each case, Drosophila genetics has shed new light on the function of these serine protease inhibitors.  相似文献   

3.
Serpins are the largest family of protease inhibitors and are fundamental for the control of proteolysis in multicellular eukaryotes. Most eukaryote serpins inhibit serine or cysteine proteases, however, noninhibitory members have been identified that perform diverse functions in processes such as hormone delivery and tumour metastasis. More recently inhibitory serpins have been identified in prokaryotes and unicellular eukaryotes, nevertheless, the precise molecular targets of these molecules remains to be identified. The serpin mechanism of protease inhibition is unusual and involves a major conformational rearrangement of the molecule concomitant with a distortion of the target protease. As a result of this requirement, serpins are susceptible to mutations that result in polymerization and conformational diseases such as the human serpinopathies. This review reports on recent major discoveries in the serpin field, based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).  相似文献   

4.
Serine protease inhibitors (serpins), the antagonists of serine proteases, were unknown in the bacterial kingdom until recently. Kang et al. in this issue of Molecular Microbiology report the cloning and functional analysis of the three serpin genes from the thermophilic anaerobic bacterium Clostridium thermocellum. Two of the serpins contain a dockerin module for location in the extracellular hydrolytic multienzyme complex, the cellulosome. The susceptibility of cellulosome to proteolytic degradation and the presence of a serine protease in the same complex provoke speculation that protease inhibitor/protease pairs could play hitherto unrecognized roles in protein stability and regulation in bacteria.  相似文献   

5.
Members of the serine protease inhibitor (serpin) superfamily play important roles in the inhibition of serine proteases involved in complex systems. This is evident in the regulation of coagulation serine proteases, especially the central enzyme in this system, thrombin. This review focuses on three serpins which are known to be key players in the regulation of thrombin: antithrombin and heparin cofactor II, which inhibit thrombin in its procoagulant role, and protein C inhibitor, which primarily inhibits the thrombin/thrombomodulin complex, where thrombin plays an anticoagulant role. Several structures have been published in the past few years which have given great insight into the mechanism of action of these serpins and have significantly added to a wealth of biochemical and biophysical studies carried out previously. A major feature of these serpins is that they are under the control of glycosaminoglycans, which play a key role in accelerating and localizing their action. While further work is clearly required to understand the mechanism of action of the glycosaminoglycans, the biological mechanisms whereby cognate glycosaminoglycans for each serpin come into contact with the inhibitors also requires much further work in this important field.  相似文献   

6.
The Toll signaling pathway, an essential innate immune response in invertebrates, is mediated via the serine protease cascade. Once activated, the serine proteases are irreversibly inactivated by serine protease inhibitors (serpins). Recently, we identified three serpin-serine protease pairs that are directly involved in the regulation of Toll signaling cascade in a large beetle, Tenebrio molitor. Of these, the serpin SPN48 was cleaved by its target serine protease, Spätzle-processing enzyme, at a noncanonical P1 residue of the serpin''s reactive center loop. To address this unique cleavage, we report the crystal structure of SPN48, revealing that SPN48 exhibits a native conformation of human antithrombin, where the reactive center loop is partially inserted into the center of the largest β-sheet of SPN48. The crystal structure also shows that SPN48 has a putative heparin-binding site that is distinct from those of the mammalian serpins. Ensuing biochemical studies demonstrate that heparin accelerates the inhibition of Spätzle-processing enzyme by a proximity effect in targeting the SPN48. Our finding provides the molecular mechanism of how serpins tightly regulate innate immune responses in invertebrates.  相似文献   

7.
Serine protease inhibitors (serpins) regulate the activities of circulating proteases. Serpins inhibit proteases by acylating the serine hydroxyl at their active sites. Before deacylation and complete proteolysis of the serpin can occur, massive conformational changes are triggered in the serpin while maintaining the covalent linkage between the protease and serpin. Here we report the structure of a serpin-trypsin Michaelis complex, which we visualized by using the S195A trypsin mutant to prevent covalent complex formation. This encounter complex reveals a more extensive interaction surface than that present in small inhibitor-protease complexes and is a template for modeling other serpin-protease pairs. Mutations of several serpin residues at the interface reduced the inhibitory activity of the serpin. The serine residue C-terminal to the scissile peptide bond is found in a closer than usual interaction with His 57 at the active site of trypsin.  相似文献   

8.
Several clones encoding serine protease inhibitors were isolated from larval and adult flea cDNA expression libraries by immunoscreening and PCR amplification. Each cDNA contained an open reading frame encoding a protein of approximately 45 kDa, which had significant sequence similarity with the serpin family of serine protease inhibitors. The thirteen cDNA clones isolated to date encode serpin proteins, which share a primary structure that includes a nearly identical constant region of about 360 amino acids, followed by a C-terminal variable region of about 40-60 amino acids. The variable C-terminal sequences encode most of the reactive site loop (RSL) and are generated by mutually exclusive alternative exon splicing, which may confer unique protease selectivity to each serpin. Utilization of an alternative exon splicing mechanism has been verified by sequence analysis of a flea serpin genomic clone and adjacent genomic sequences. RNA expression patterns of the cloned genes have been examined by Northern blot analysis using variable region-specific probes. Several putative serpins have been overexpressed using the cDNA clones in Escherichia coli and baculovirus expression systems. Two purified baculovirus-expressed recombinant proteins have N-terminal amino acid sequences identical to the respective purified native mature flea serpins indicating that appropriate N-terminal processing occurred in the virus-infected insect cells.  相似文献   

9.
Luo LY  Jiang W 《Biological chemistry》2006,387(6):813-816
Accumulated evidence has shown that human tissue kallikreins (hKs), a group of 15 homologous secreted serine proteases, are novel cancer biomarkers. We report here the inhibition profiles of selected hKs, including hK5, hK7, hK8, hK11, hK12, hK13, and hK14, by several common serine protease inhibitors (serpins) found in plasma. The association constants for the binding of serpins to kallikreins were determined and compared. Protein C inhibitor was found to be the fastest-binding serpin for most of these hKs. alpha2-Antiplasmin, alpha1-antichymotrypsin, and alpha1-antitrypsin also showed rapid inhibition of certain hKs. Kallistatin exhibited fast inhibition only with hK7. Our data demonstrate that these hKs are specifically regulated by certain serpins and their distinct inhibition profiles will be valuable aids in various aspects of kallikrein research.  相似文献   

10.
Necrotic is a member of the serine protease inhibitor or serpin superfamily. It is a potent inhibitor of elastase and chymotrypsin type proteases and is responsible for regulating the anti-fungal response in Drosophila melanogaster. Necrotic contains three basic lysine residues within the D-helix that are homologous to those found in the heparin-binding domain of antithrombin and heparin co-factor II. We show here that substitution of all three lysine residues for glutamines caused cellular necrosis and premature death in Drosophila in keeping with a loss of function phenotype. The lysine to glutamine substitutions had no effect on the overall structure of recombinant Necrotic protein but abolished the formation of stable complexes with target proteases. Individual substitutions with either glutamine or alanine demonstrated that lysine 68 was the most critical residue for inhibitory activity. Despite the homology to other serpins, Necrotic did not bind, nor was it activated by sulfated glycans. These data demonstrate a critical role for basic residues within the D-helix (and lysine 68 in particular) in the inhibitory mechanism of the serpin Necrotic.  相似文献   

11.
EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.  相似文献   

12.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   

13.
An extracellular serine protease cascade generates the ligand that activates the Toll signaling pathway to establish dorsoventral polarity in the Drosophila embryo. We show here that this cascade is regulated by a serpin-type serine protease inhibitor, which plays an essential role in confining Toll signaling to the ventral side of the embryo. This role is strikingly analogous to the function of the mammalian serpin antithrombin in localizing the blood-clotting cascade, suggesting that serpin inhibition of protease activity may be a general mechanism for achieving spatial control in diverse biological processes.  相似文献   

14.
The native form of serpins (serine protease inhibitors) is metastable, which is critical to their biological functions. Spontaneous conversion from the native form of serpins into a more stable conformation, called the "latent" form, is restricted. To examine whether the connectivity of strand 1 of beta-sheet C to the hydrophobic core is critical to the serpin's preferential folding to the metastable native conformation, we designed a circularly-permuted mutant of alpha(1)-antitrypsin, the prototype serpin, in which strand 1C is disconnected from the hydrophobic core. Conformation of the circular permutant was similar to that of the latent form, as revealed by equilibrium unfolding, limited proteolysis, and spectroscopic properties. Our results support the notion that rapid folding of the hydrophobic core with concomitant incorporation of strand 1C into beta-sheet C traps the serpin molecule into its native metastable conformation.  相似文献   

15.
16.
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.  相似文献   

17.
Serine protease inhibitors (serpins) are a family of structurally related proteins that play key roles in the regulation of proteolytic homeostasis. We have isolated a novel intracellular serpin, termed raPIT5a, from the rat pituitary gland. Northern blot analysis indicated raPIT5a mRNA expression in a range of tissues, including the adrenal gland and the brain. In situ hybridisation histochemistry revealed raPIT5a mRNA expression in specific cell populations in the rat pituitary gland, adrenal gland, and pancreas. Based on sequence similarities to other intracellular serpins, we predicted raPIT5a may inhibit the pro-apoptotic serine protease granzyme B. We confirmed this experimentally by identification of a stable inhibitory complex between granzyme B and raPIT5a. To determine whether granzyme B or granzyme B-related enzymes were expressed in the rat pituitary gland, we performed PCR using primers predicted to amplify granzyme B and two other published granzyme sequences. We identified rat natural killer protease-1 (RNKP-1), the rat homologue of granzyme B, and a novel putative serine protease highly similar to granzyme-like protein III (GLP III), which we termed GLP IIIa. These data suggest raPIT5a may regulate apoptosis in the pituitary by inhibition of granzyme B or GLP IIIa, or members of the caspase enzyme family which have similar substrate specificity. We have also identified expression of a second serpin, called neuroserpin, in pituitary tissue and found that it alters the morphology of the AtT20 corticotrope cell line, presumably through changes in cell adhesion. These results identify new roles for serpins in pituitary cell function.  相似文献   

18.
Serpins are protease inhibitors that play essential roles in the down-regulation of extracellular proteolytic cascades. The core serpin domain is highly conserved, and typical serpins are encoded with a molecular size of 35–50 kDa. Here, we describe a novel 93-kDa protein that contains two complete, tandemly arrayed serpin domains. This twin serpin, SPN93, was isolated from the larval hemolymph of the large beetle Tenebrio molitor. The N-terminal serpin domain of SPN93 forms a covalent complex with the Spätzle-processing enzyme, a terminal serine protease of the Toll signaling cascade, whereas the C-terminal serpin domain of SPN93 forms complexes with a modular serine protease and the Spätzle-processing enzyme-activating enzyme, which are two different enzymes of the cascade. Consequently, SPN93 inhibited β-1,3-glucan-mediated Toll proteolytic cascade activation in an in vitro system. Site-specific proteolysis of SPN93 at the N-terminal serpin domain was observed after activation of the Toll proteolytic cascade in vivo, and down-regulation of SPN93 by RNAi sensitized β-1,3-glucan-mediated larval death. Therefore, SPN93 is the first serpin that contains twin tandemly arrayed and functionally active serpin domains that have a regulatory role in the larval Toll proteolytic signaling cascade.  相似文献   

19.
BACKGROUND: The reactive center loops (RCL) of serpins undergo large conformational changes triggered by the interaction with their target protease. Available crystallographic data suggest that the serpin RCL is polymorphic, but the relevance of the observed conformations to the competent active structure and the conformational changes that occur on binding target protease has remained obscure. New high-resolution data on an active serpin, serpin 1K from the moth hornworm Manduca sexta, provide insights into how active serpins are stabilized and how conformational changes are induced by protease binding. RESULTS: The 2.1 A structure shows that the RCL of serpin 1K, like that of active alpha1-antitrypsin, is canonical, complimentary and ready to bind to the target protease between P3 and P3 (where P refers to standard protease nomenclature),. In the hinge region (P17-P13), however, the RCL of serpin 1K, like ovalbumin and alpha1-antichymotrypsin, forms tight interactions that stabilize the five-stranded closed form of betasheet A. These interactions are not present in, and are not compatible with, the observed structure of active alpha1-antitrypsin. CONCLUSIONS: Serpin 1K may represent the best resting conformation for serpins - canonical near P1, but stabilized in the closed conformation of betasheet A. By comparison with other active serpins, especially alpha1-antitrypsin, a model is proposed in which interaction with the target protease near P1 leads to conformational changes in betasheet A of the serpin.  相似文献   

20.
Hemolymph of Manduca sexta contains a number of serine proteinase inhibitors from the serpin superfamily. During formation of a stable complex between a serpin and a serine proteinase, the enzyme cleaves a specific peptide bond in an exposed loop (the reactive-site region) at the surface of the serpin. The amino acid residue on the amino-terminal side of this scissile bond, the P1 residue, is important in defining the selectivity of a serpin for inhibiting different types of serine proteinases. M. sexta serpin-1B, with alanine at the position predicted from sequence alignments to be the P1 residue, was previously named alaserpin. This alanyl residue was changed by site-directed mutagenesis to lysine (A343K) and phenylalanine (A343F). The serpin-1B cDNA and its mutants were inserted into an expression vector, H6pQE-60, and the serpin proteins were expressed in Escherichia coli. Affinity-purified recombinant serpins selectively inhibited mammalian serine proteinases: serpin-1B inhibited elastase; serpin-1B(A343K) inhibited trypsin, plasmin, and thrombin; serpin-1B(A343F) inhibited chymotrypsin as well as trypsin. All three serpins inhibited human cathepsin G. This insect serpin and its site-directed mutants associated with mammalian serine proteinases at rates similar to those reported for mammalian serpins. Serpin-1B and its mutants formed SDS-stable complexes with the enzymes they inhibited. The scissile bond was determined to be between residues 343 and 344 in wild-type serpin-1B and in serpin-1B with mutations at residue 343. These results demonstrate that the P1 alanine residue defines the primary selectivity of serpin-1B for elastase-like enzymes, and that this selectivity can be altered by mutations at this position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号