首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TLS/FUS gene is involved in a recurrent chromosomal translocation in human myxoid liposarcomas. We previously reported that TLS is a potential splicing regulator able to modulate the 5'-splice site selection in an E1A pre-mRNA. Using an in vitro selection procedure, we investigated whether TLS exhibits a specificity with regard to RNA recognition. The RNAs selected by TLS share a common GGUG motif. Mutation of a G or U residue within this motif abolishes the interaction of TLS with the selected RNAs. We showed that TLS can bind GGUG-containing RNAs with a 250 nm affinity. By UV cross-linking/competition and immunoprecipitation experiments, we demonstrated that TLS recognizes a GGUG-containing RNA in nuclear extracts. Each one of the RNA binding domains (the three RGG boxes and the RNA recognition motif) contributes to the specificity of the TLS.RNA interaction, whereas only RRM and RGG2-3 participate to the E1A alternative splicing in vivo. The specificity of the TLS.RNA interaction was also observed using as natural pre-mRNA, the G-rich IVSB7 intron of the beta-tropomyosin pre-mRNA. Moreover, we determined that RNA binding specificities of TLS and high nuclear ribonucleoprotein A1 were different. Hence, our results help define the role of the specific interaction of TLS with RNA during the splicing process of a pre-mRNA.  相似文献   

2.
Streptomycin is an aminocyclitol glycoside antibiotic, which interferes with prokaryotic protein synthesis by interacting with the ribosomal RNA. We report here that streptomycin is also able to inhibit self splicing of the group I intron of the thymidylate synthase gene of phage T4. The inhibition is kinetically competitive with the substrate guanosine. Streptomycin and guanosine have in common a guanidino group, which has been shown to undergo hydrogen bonds with the ribozyme (Bass & Cech, Biochemistry, 25, 1986, 4473). The inhibitory effect of streptomycin extends to other group I introns, but does not affect group II introns. Mutating the bulged nucleotide in the conserved P7 secondary structure element of the td intron alters the affinity of the ribozyme for both guanosine and streptomycin. Myomycin, an antibiotic with similar effects on protein synthesis as streptomycin, is also able to inhibit splicing. In contrast, bluensomycin, which is structurally related to streptomycin, but contains only one guanidino group does not inhibit splicing. We discuss these findings in support of an evolutionary model that stresses the antiquity of antibiotics (J. Davies, Molecular Microbiology 4, 1990, 1227).  相似文献   

3.
4.
P element somatic inhibitor (PSI) is a 97-kDa RNA-binding protein with four KH motifs that is involved in the inhibition of splicing of the Drosophila P element third intron (IVS3) in somatic cells. PSI interacts with a negative regulatory element in the IVS3 5' exon. This element contains two pseudo-5' splice sites, termed F1 and F2. To identify high affinity binding sites for the PSI protein, in vitro selection (SELEX) was performed using a random RNA oligonucleotide pool. Alignment of high affinity PSI-binding RNAs revealed a degenerate consensus sequence consisting of a short core motif of CUU flanked by alternative purines and pyrimidines. Interestingly, this sequence resembles the F2 pseudo-5' splice site in the P element negative regulatory element. Additionally, a negative in vitro selection of PCR-mutagenized P element 5' exon regulatory element RNAs identified two U residues in the F1 and F2 pseudo-5' splice sites as important nucleotides for PSI binding and the U residue in the F2 region is a nearly invariant nucleotide in the consensus SELEX motif. The high affinity PSI SELEX sequence acted as a splicing inhibitor when placed in the context of a P element splicing pre-mRNA in vitro. Data from in vitro splicing assays, UV crosslinking and RNA-binding competition experiments indicates a strong correlation between the binding affinities of PSI for the SELEX sequences and their ability to modulate splicing of P element IVS3 in vitro.  相似文献   

5.
Bluensomycin (glebomycin) is an aminocyclitol antibiotic that differs structurally from dihydrostreptomycin in having bluensidine (1D-1-O-carbamoyl-3-guanidinodeoxy-scyllo-inositol) rather than streptidine (1,3-diguanidino-1,3-dideoxy-scyllo-inositol) as its aminocyclitol moiety. Extracts of the bluensomycin producer Streptomyces hygroscopicus form glebosus ATCC 14607 (S. glebosus) were found to have aminodeoxy-scyllo-inositol kinase activity but to lack 1D-1-guanidino-3-amino-1,3-dideoxy-scyllo-inositol kinase activity, showing for the first time that these two reactions in streptomycin producers must be catalyzed by different enzymes. S. glebosus extracts therefore possess the same five enzymes required for synthesis of guanidinodeoxy-scyllo-inositol from myo-inositol that are found in streptomycin producers but lack the next three of the four enzymes found in streptomycin producers that are required to synthesize the second guanidino group of streptidine-P. In place of a second guanidino group, S. glebosus extracts were found to catalyze a Mg2(+)-dependent carbamoylation of guanidinodeoxy-scyllo-inositol to form bluensidine, followed by a phosphorylation to form bluensidine-P. The novel carbamoyl-P:guanidinodeoxy-scyllo-inositol O-carbamoyltransferase and ATP:bluensidine phosphotransferase activities were not detected in streptomycin producers or in S. glebosus during its early rapid growth phase. Free bluensidine appears to be a normal intermediate in bluensomycin biosynthesis, in contrast to the case of streptomycin biosynthesis; in the latter, although exogenous streptidine can enter the pathway via streptidine-P, free streptidine is not an intermediate in the endogenous biosynthetic pathway. Comparison of the streptomycin and bluensomycin biosynthetic pathways provides a unique opportunity to evaluate those proposed mechanisms for the evolutionary acquisition of new biosynthetic capabilities that involve gene duplication and subsequent mutational changes in one member of the pair. In this model, there are at least five pairs of enzymes catalyzing analogous reactions that can be analyzed for homology at both the protein and DNA levels, including two putative pairs of inositol kinases detected in this study.  相似文献   

6.
7.
B52, also known as SRp55, is a member of the Drosophila melanogaster SR protein family, a group of nuclear proteins that are both essential splicing factors and specific splicing regulators. Like most SR proteins, B52 contains two RNA recognition motifs in the N terminus and a C-terminal domain rich in serine-arginine dipeptide repeats. Since B52 is an essential protein and is expected to play a role in splicing a subset of Drosophila pre-mRNAs, its function is likely to be mediated by specific interactions with RNA. To investigate the RNA-binding specificity of B52, we isolated B52-binding RNAs by selection and amplification from a pool of random RNA sequences by using full-length B52 protein as the target. These RNAs contained a conserved consensus motif that constitutes the core of a secondary structural element predicted by energy minimization. Deletion and substitution mutations defined the B52-binding site on these RNAs as a hairpin loop structure covering about 20 nucleotides, which was confirmed by structure-specific enzymatic probing. Finally, we demonstrated that both RNA recognition motifs of B52 are required for RNA binding, while the RS domain is not involved in this interaction.  相似文献   

8.
Human La protein is an essential factor in the biology of both coding and non-coding RNAs. In the nucleus, La binds primarily to 3' oligoU containing RNAs, while in the cytoplasm La interacts with an array of different mRNAs lacking a 3' UUU(OH) trailer. An example of the latter is the binding of La to the IRES domain IV of the hepatitis C virus (HCV) RNA, which is associated with viral translation stimulation. By systematic biophysical investigations, we have found that La binds to domain IV using an RNA recognition that is quite distinct from its mode of binding to RNAs with a 3' UUU(OH) trailer: although the La motif and first RNA recognition motif (RRM1) are sufficient for high-affinity binding to 3' oligoU, recognition of HCV domain IV requires the La motif and RRM1 to work in concert with the atypical RRM2 which has not previously been shown to have a significant role in RNA binding. This new mode of binding does not appear sequence specific, but recognizes structural features of the RNA, in particular a double-stranded stem flanked by single-stranded extensions. These findings pave the way for a better understanding of the role of La in viral translation initiation.  相似文献   

9.
Anti-cancer antibiotics, chromomycin A3 (CHR) and mithramycin (MTR) inhibit DNA directed RNA synthesis in vivo by binding reversibly to template DNA in the minor groove with GC base specificity, in the presence of divalent cations like Mg2+. Under physiological conditions, (drug)2Mg2+ complexes formed by the antibiotics are the potential DNA binding ligands. Structures of CHR and MTR differ in their saccharide residues. Scrutiny of the DNA binding properties reveal significant differences in their sequence selectivity, orientation and stoichiometry of binding. Here, we have analyzed binding and thermodynamic parameters for the interaction of the antibiotics with a model oligonucleotide sequence, d(TAGCTAGCTA)2 to understand the role of sugars. The oligomer contains two potential binding sites (GpC) for the ligands. The study illustrates that the drugs bind differently to the sequence. (MTR)2Mg2+ binds to both sites whereas (CHR)2Mg2+ binds to a single site. UV melting profiles for the decanucleotide saturated with the ligands show that MTR bound oligomer is highly stabilized and melts symmetrically. In contrast, with CHR, loss of symmetry in the oligomer following its association with a single (CHR)2Mg2+ complex molecule leads to a biphasic melting curve. Results have been interpreted in the light of saccharide dependent differences in ligand flexibility between the two antibiotics.  相似文献   

10.
11.
The fifth and terminal intron of yeast cytochrome b pre-mRNA (a group I intron) requires a protein encoded by the nuclear gene CBP2 for splicing. Because catalysis is intrinsic to the RNA, the protein is believed to promote formation of secondary and tertiary structure of the RNA, resulting in a catalytically competent intron. In vitro, this mitochondrial intron can be made to self-splice or undergo protein-facilitated splicing by varying the Mg(2+) and monovalent salt concentrations. This two-component system, therefore, provides a good model for understanding the role of proteins in RNA folding. A UV cross-linking experiment was initiated to identify RNA binding sites on Cbp2 and gain insights into Cbp2-intron interactions. A 12-amino acid region containing a presumptive contact site near the amino terminus was targeted for mutagenesis, and mutant proteins were characterized for RNA binding and stimulation of splicing. Mutations in this region resulted in partial or complete loss of function, demonstrating the importance of this determinant for stimulation of RNA splicing. Several of the mutations that severely reduced splicing did not significantly shift the overall binding isotherm of Cbp2 for the precursor RNA, suggesting that contacts critical for activity are not necessarily reflected in the dissociation constant. This analysis has identified a unique RNA binding motif of alternating basic and aromatic residues that is essential for protein facilitated splicing.  相似文献   

12.
Recently, it was reported that expanded r(CAG) triplet repeats (r(CAG)(exp)) associated with untreatable neurological diseases cause pre-mRNA mis-splicing likely due to sequestration of muscleblind-like 1 (MBNL1) splicing factor. Bioactive small molecules that bind the 5'CAG/3'GAC motif found in r(CAG)(exp) hairpin structure were identified by using RNA binding studies and virtual screening/chemical similarity searching. Specifically, a benzylguanidine-containing small molecule was found to improve pre-mRNA alternative splicing of MBNL1-sensitive exons in cells expressing the toxic r(CAG)(exp). The compound was identified by first studying the binding of RNA 1 × 1 nucleotide internal loops to small molecules known to have affinity for nucleic acids. Those studies identified 4',6-diamidino-2-phenylindole (DAPI) as a specific binder to RNAs with the 5'CAG/3'GAC motif. DAPI was then used as a query molecule in a shape- and chemistry alignment-based virtual screen to identify compounds with improved properties, which identified 4-guanidinophenyl 4-guanidinobenzoate, a small molecule that improves pre-mRNA splicing defects associated with the r(CAG)(exp)-MBNL1 complex. This compound may facilitate the development of therapeutics to treat diseases caused by r(CAG)(exp) and could serve as a useful chemical tool to dissect the mechanisms of r(CAG)(exp) toxicity. The approach used in these studies, defining the small RNA motifs that bind small molecules with known affinity for nucleic acids and then using virtual screening to optimize them for bioactivity, may be generally applicable for designing small molecules that target other RNAs in the human genomic sequence.  相似文献   

13.
In vitro selection was used to isolate five classes of allosteric hammerhead ribozymes that are triggered by binding to certain divalent metal ion effectors. Each of these ribozyme classes are similarly activated by Mn2+, Fe2+, Co2+, Ni2+, Zn2+ and Cd2+, but their allosteric binding sites reject other divalent metals such as Mg2+, Ca2+ and Sr2+. Through a more comprehensive survey of cations, it was determined that some metal ions (Be2+, Fe3+, Al3+, Ru2+ and Dy2+) are extraordinarily disruptive to the RNA structure and function. Two classes of RNAs examined in greater detail make use of conserved nucleotides within the large internal bulges to form critical structures for allosteric function. One of these classes exhibits a metal-dependent increase in rate constant that indicates a requirement for the binding of two cation effectors. Additional findings suggest that, although complex allosteric functions can be exhibited by small RNAs, larger RNA molecules will probably be required to form binding pockets that are uniquely selective for individual cation effectors.  相似文献   

14.
15.
An SP6/mouse insulin RNA precursor containing two exons and one intron can be spliced in a partially purified nuclear extract isolated from MOPC-315 mouse myeloma cells. We have detected the putative RNA splicing intermediate (intron-3'exon) in a lariat form, the excised intron in a lariat form, and the mRNA spliced product. The in vitro splicing reaction of gel-purified RNA precursors requires ATP and Mg2+ and was accompanied by the formation of a 60-40S ribonucleoprotein complex. The formation of the 60S complex requires ATP. At least two Sm snRNPs containing U1 and U2 RNAs are components of the 60-40S complex. The assemble of those snRNPs occurs early during the splicing reaction and it requires ATP and intron containing pre-mRNAs.  相似文献   

16.
Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain.  相似文献   

17.
The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which--along with structure-based mutagenesis--reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.  相似文献   

18.
19.
The Drosophila sex-lethal (Sxl) protein, a regulator of somatic sexual differentiation, is an RNA binding protein with two potential RNA recognition motifs (RRMs). It is thought to exert its function on splicing by binding to specific RNA sequences within Sxl and transformer (tra) pre-mRNAs. To examine the Sxl RNA binding specificity in detail, we performed in vitro selection and amplification of ligand RNAs from a random sequence pool on the basis of affinity with Sxl protein. After three cycles of selection and amplification, we cloned and sequenced 17 cDNAs corresponding to the RNAs selected in vitro. Sequencing showed that most of the RNAs selected contain polyuridine stretches surrounded by purine residues. In vitro binding analysis revealed that the sequences of the in vitro selected RNAs with relatively high affinity for Sxl show similarity to that of the Sxl- and tra-regulated acceptor regions, including the invariant AG sequence for splicing. These results suggest that Sxl recognizes and preferentially binds to a polyuridine stretch with a downstream AG sequence.  相似文献   

20.
The human La autoantigen (hLa) protein is a predominantly nuclear phosphoprotein that contains three potential RNA binding domains referred to as the La motif and the RNA recognition motifs RRMs 1 and 2. With this report, we differentiated the contribution of its three RNA binding domains to RNA binding by combining in vitro and in vivo assays. Also, surface plasmon resonance technology was used to generate a model for the sequential contribution of the RNA binding domains to RNA binding. The results indicated that the La motif may contribute to specificity rather than affinity, whereas RRM1 is indispensable for association with pre-tRNA and hY1 RNA. Furthermore, RRM2 was not crucial for the interaction with various RNAs in vivo, although needed for full-affinity binding in vitro. Moreover, earlier studies suggest that RNA binding by hLa may direct its subcellular localization. As shown previously for RRM1, deletion of RNP2 sequence in RRM1 alters nucleolar distribution of hLa, not observed after deletion of the La motif. Here we discuss a model for precursor RNA binding based on a sequential association process mediated by RRM1 and the La motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号