首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-mobility-group (HMG) proteins, a group of nonhistone chromatin-associated proteins, have been extensively characterized in higher eucaryotic cells. To test the biological function of an HMG protein, we have cloned and mutagenized a gene encoding an HMG-like protein from the yeast Saccharomyces cerevisiae. A yeast genomic DNA library was screened with an oligonucleotide designed to hybridize to any yeast gene containing an amino acid sequence conserved in several higher eucaryotic HMG proteins. DNA sequencing and Northern (RNA) blot analysis revealed that one gene, called ACP2 (acidic protein 2), synthesizes a poly(A)+ RNA in S. cerevisiae which encodes a 27,000-molecular-weight protein whose amino acid sequence is homologous to those of calf HMG1 and HMG2 and trout HMGT proteins. Standard procedures were used to construct a diploid yeast strain in which one copy of the ACP2 gene was mutated by replacement with the URA3 gene. When this diploid was sporulated and dissected, only half of the spores were viable. About half of the nonviable spores proceeded through two or three cell divisions and then stopped dividing; the rest did not germinate at all. None of the viable spores contained the mutant ACP2 gene, thus proving that the protein encoded by ACP2 is required for cell viability. The results presented here demonstrate that an HMG-like protein has an essential physiological function.  相似文献   

2.
Analysis of the ACP1 gene product: classification as an FMN phosphatase.   总被引:1,自引:0,他引:1  
The relationship between the ACP1 gene product, an 18kDa acid phosphatase (E.C. 3.1.3.2) postulated to function as a protein tyrosyl phosphatase, and the cellular flavin mononucleotide (FMN) phosphatase has been examined in vitro and by using cultured Chinese hamster ovary (CHO) cells. Kinetic analysis indicated that at pH 6 the acid phosphatase utilized a variety of phosphate monoesters as substrates. While small molecules such as FMN were effectively utilized as substrates (kcat/Km = 7.3 x 10(3) s-1M-1), the tyrosyl phosphorylated form of the adipocyte lipid binding protein was a relatively poor substrate (kcat/Km = 1.7 x 10(-1) s-1M-1) suggesting a role for the phosphatase in flavin metabolism. Fractionation of CHO cell extracts revealed that 90% of the FMN phosphatase activity was soluble and that all of the soluble activity eluted from a Sephadex G-75 column with the acid phosphatase. All of the soluble FMN phosphatase activity was inhibited by immunospecific antibodies directed against the bovine heart ACP1 gene product. These results suggest that the ACP1 gene product functions cellularly not as a protein tyrosyl phosphatase but as a soluble FMN phosphatase.  相似文献   

3.
4.
The erythromycin A-producing polyketide synthase from the gram-positive bacterium Saccharopolyspora erythraea (formerly Streptomyces erythraeus) has evident structural similarity to fatty acid synthases, particularly to the multifunctional fatty acid synthases found in eukaryotic cells. Fatty acid synthesis in S. erythraea has previously been proposed to involve a discrete acyl carrier protein (ACP), as in most prokaryotic fatty acid synthases. We have cloned and sequenced the structural gene for this ACP and find that it does encode a discrete small protein. The gene lies immediately adjacent to an open reading frame whose gene product shows sequence homology to known beta-ketoacyl-ACP synthases. A convenient expression system for the S. erythraea ACP was obtained by placing the gene in the expression vector pT7-7 in Escherichia coli. In this system the ACP was efficiently expressed at levels 10 to 20% of total cell protein. The recombinant ACP was active in promoting the synthesis of branched-chain acyl-ACP species by extracts of S. erythraea. Electrospray mass spectrometry is shown to be an excellent method for monitoring the efficiency of in vivo posttranslational modification of ACPs.  相似文献   

5.
Summary Red cell acid phosphatase (ACP1) catalyses the transfer of phosphate from phosphate ester substrates to suitable acceptor alcohols such as methanol and glycerol. The rate of substrate turnover in the presence of acceptors is increased by the increment of the phosphotransferase reaction, thus allowing this activity to be measured. There is specificity with regard to acceptors: (a) polyols (e.g., glycerol) are better acceptors than the corresponding n-alcohols, and (b) polyol configuration and chain length determine acceptor activity. Ribitol was the most efficient acceptor found. Each of the three common ACP1 alleles is represented electrophoretically by two isozyme bands; the phosphotransferase activity of the anodal isozyme was found to be more than twice that of the cathodal isozyme. The extent of phosphotransferase activity is also genotype dependent. In the presence of 2M glycerol, the relative phosphotransferase efficiencies for the three homozygote types were: ACP1*B=3.7, ACP1*A=3.4, and ACP1*C =2.5. This pattern of B>A>C is the same as found for the modulation of ACP1 by purines and folates.Publication no. 278 of the Forensic Science Group, School of Public Health, University of California  相似文献   

6.
The expression of an Arabidopsis acyl carrier protein (ACP) gene promoter has been examined in transgenic tobacco plants by linking it to the reporter gene -glucuronidase (GUS). Fluorometric analysis showed that the ACP gene promoter was most active in developing seeds. Expression was also high in roots, but significantly lower in young leaves and downregulated upon their maturation. Etiolated and light-grown seedlings showed the same level of GUS activity, indicating that this promoter is not tightly regulated by light. Histochemical studies revealed that expression was usually highest in apical/ meristematic zones of vegetative tissues. Young flowers (ca. 1 cm in length) showed GUS staining in nearly all cell types, however, cell-specific patterns emerged in more mature flowers. The ACP gene promoter was active in the stigma and transmitting tissue of the style, as well as in the tapetum of the anther, developing pollen, and ovules. The results provide evidence that this ACP gene is regulated in a complex manner and is responsive to the array of signals which accompany cell differentiation, and a demand for fatty acids and lipids, during organogenesis.  相似文献   

7.
8.
Rhizobium species produce an inducible acyl carrier protein (ACP), encoded by the nodF gene, that somehow functions in an exchange of cell signals between bacteria and specific plant hosts, leading to nodulation of plant roots and symbiotic nitrogen fixation, as well as a constitutive ACP needed for the synthesis of essential cell lipids. The periplasmic cyclic glucans of Rhizobium spp. are also involved in specific rhizobium-plant interaction. These glucans are strongly similar to the periplasmic membrane-derived oligosaccharides (MDO) of Escherichia coli. E. coli ACP is an essential component of a membrane-bound transglucosylase needed for the biosynthesis of MDO, raising the possibility that either or both of the rhizobial ACPs might have a similar function. We have now isolated the constitutive ACP of R. meliloti and determined its primary structure. We have also examined its function, together with those of ACPs from E. coli, Rhodobacter sphaeroides, and spinach, in the MDO transglucosylase system and as substrate for the E. coli ACP acylase enzyme. All four ACPs act as acceptors of acyl residues, but only the E. coli ACP functions in the transglucosylase system.  相似文献   

9.
The genes involved in polyphosphate metabolism in Escherichia coli were cloned behind different inducible promoters on separate plasmids. The gene coding for polyphosphate kinase (PPK), the enzyme responsible for polyphosphate synthesis, was placed behind the Ptac promoter. Polyphosphatase, a polyphosphate depolymerase, was similarly expressed by using the arabinose-inducible PBAD promoter. The ability of cells containing these constructs to produce active enzymes only when induced was confirmed by polyphosphate extraction, enzyme assays, and RNA analysis. The inducer concentrations giving optimal expression of each enzyme were determined. Experiments were performed in which ppk was induced early in growth, overproducing PPK and allowing large amounts of polyphosphate to accumulate (80 mumol in phosphate monomer units per g of dry cell weight). The ppx gene was subsequently induced, and polyphosphate was degraded to inorganic phosphate. Approximately half of this polyphosphate was depleted in 210 min. The phosphate released from polyphosphate allowed the growth of phosphate-starved cells and was secreted into the medium, leading to a down-regulation of the phosphate-starvation response. In addition, the steady-state polyphosphate level was precisely controlled by manipulating the degree of ppx induction. The polyphosphate content varied from 98 to 12 mumol in phosphate monomer units per g of dry cell weight as the arabinose concentration was increased from 0 to 0.02% by weight.  相似文献   

10.
A bacteriophage T4 mutation (ptg19-80c) located in gene 23, which encodes the major structural protein of the T4 capsid, results in the production of capsids of abnormal length. Mutations outside gene 23 which partially suppress ptg19-80c have been described in the accompanying paper (D. H. Doherty, J. Virol. 43:641-654, 1982). Characterization of these suppressors was extended. A complementation test suggested that the suppressors were in genes 22 and 24. These genes coded for the major component of the morphogenetic core of the capsid precursor and the vertex protein of the capsid, respectively. The suppressor mutations were found to have no obvious phenotype in the absence of ptg19-80c. Suppression was shown to be allele specific: other ptg mutations at different sites in gene 23 were not suppressed by the suppressors of ptg19-80c. These results indicated that specific interactions among the three proteins gp22, gp23, and gp24 may play a role in the regulation of T4 capsid-length determination. Current models for capsid-length determination are considered in the light of these results.  相似文献   

11.
J. Dissing 《Biochemical genetics》1987,25(11-12):901-918
An immunological study was performed on human red cell acid phosphatase (ACP1) isozymes encoded by different alleles, each of which is expressed as an electrophoretically fast (f) isozyme and a slow (s) isozyme. These isozymes reacted as two immunochemically different groups. Allele-specific reactions were not detected between either the f isozymes or the s isozymes. Quantitation of ACP1 isozymes in red cells by crossed immunoelectrophoresis revealed a phenotype-dependent variation in the concentration of isozyme protein. A simple gene dosage effect was indicated and the ordering of the ACP1 alleles (ACP1*A < ACP1*B < ACP1*C < ACP1*E) was identical to that found for enzyme activity levels. Also, an allele effect on the proportion between s and f isozymes (s/f) was observed; the ordering here was ACP1* B < ACP1*A < ACP1*, which is the same as that reported for the susceptibility to modulation with purines. These variations in isozyme protein levels appear to account for the phenotypic differences in the intensity of the isozyme bands, when activity-stained after electrophoresis, and in the red cell enzyme activity levels. Investigation of two carriers of a Null allele showed no evidence of an aberrant protein product, and half-normal concentrations of enzyme protein were observed in the red cells of these individuals.  相似文献   

12.
Low molecular weight phosphotyrosyl protein phosphatases of human placenta and human red cell were purified and sequenced by a combination of Edman degradation and tandem mass spectrometry. Screening of a human placental lambda gt11 cDNA library yielded overlapping cDNA clones coding for two distinct human cytoplasmic low molecular weight phosphotyrosyl protein phosphatases (HCPTPs). The two longest clones, designated HCPTP1-1 and HCPTP2-1, were found to have identical nucleotide sequences, with the exception of a 108-base pair segment in the middle of the open reading frame. Polymerase chain reaction studies with human genomic DNA suggest that the difference between HCPTP1-1 and HCPTP2-1 does not result from alternative RNA splicing. Studies with a human chromosome 2-specific library confirmed that these sequences are located on chromosome 2, which is known to be the location of red cell acid phosphatase locus ACP1. The coding sequences of HCPTP1-1 and HCPTP2-1 were placed downstream from a bacteriophage T7 promoter and the proteins were expressed in Escherichia coli. The resulting recombinant enzymes (designated HCPTP-A and HCPTP-B, respectively) showed molecular weights of 18,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and both of them exhibited immunoreactivity with antisera raised against authentic human placental and bovine heart enzymes. The expressed proteins were highly active towards the phosphatase substrates p-nitrophenyl phosphate, beta-naphthyl phosphate, and O-phospho-L-tyrosine, but not alpha-naphthyl phosphate, threonine phosphate, or O-phospho-L-serine. HCPTP-A and -B possessed effectively identical amino acid compositions, immunoreactivities, inhibition by formaldehyde, and kinetic properties when compared with two human red cell acid phosphatase isoenzymes. It is concluded that HCPTP-A and -B are the fast and slow forms of red cell acid phosphatase, respectively, and that this enzyme is not unique to the red cell but is instead expressed in all human tissues.  相似文献   

13.
In yeast, the repression of acid phosphatase under high phosphate growth conditions requires the trans-acting factor PHO80. We have determined the DNA sequence of the PHO80 gene and found that it encodes a protein of 293 amino acids. The expression of the PHO80 gene, as measured by Northern analysis and level of a PHO80-LacZ fusion protein is independent of the level of phosphate in the growth medium. Disruption of the PHO80 gene is a non-lethal event and causes a derepressed phenotype, with acid phosphatase levels which are 3-4 fold higher than the level found in derepressed wild type cells. Furthermore, over-expression of the PHO80 gene causes a reduction in the level of acid phosphatase produced under derepressed growth conditions. Finally, we have cloned, localized and sequenced a temperature-sensitive allele of PHO80 and found the phenotype to be due to T to C transition causing a substitution of a Ser for a Leu at amino acid 163 in the protein product.  相似文献   

14.
The pnhA gene of Pasteurella multocida encodes PnhA, which is a member of the Nudix hydrolase subfamily of dinucleoside oligophosphate pyrophosphatases. PnhA hydrolyzes diadenosine tetra-, penta-, and hexaphosphates with a preference for diadenosine pentaphosphate, from which it forms ATP and ADP. PnhA requires a divalent metal cation, Mg(2+) or Mn(2+), and prefers an alkaline pH of 8 for optimal activity. A P. multocida strain that lacked a functional pnhA gene, ACP13, was constructed to further characterize the function of PnhA. The cellular size of ACP13 was found to be 60% less than that of wild-type P. multocida, but the growth rate of ACP13 and its sensitivity to heat shock conditions were similar to those of the wild type, and the wild-type cell size was restored in the presence of a functional pnhA gene. Wild-type and ACP13 strains were tested for virulence by using the chicken embryo lethality model, and ACP13 was found to be up to 1,000-fold less virulent than the wild-type strain. This is the first study to use an animal model in assessing the virulence of a bacterial strain that lacked a dinucleoside oligophosphate pyrophosphatase and suggests that the pyrophosphatase PnhA, catalyzing the hydrolysis of diadenosine pentaphosphates, may also play a role in facilitating P. multocida pathogenicity in the host.  相似文献   

15.
Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein- coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L- (+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6.  相似文献   

16.
In Escherichia coli anaerobic growth lowers the basal or induced levels of numerous enzymes associated with aerobic metabolism. Mutations in arcA (dye) at min 0 relieve this pleiotropic anaerobic repression and render the cell sensitive to the redox dye toluidine blue. In this study we identified a second pleiotropic control gene, arcB, at min 69.5. Mutations, including a deletion, in this gene also relieved the anaerobic repression and caused sensitivity to toluidine blue. Mutations in arcA or arcB did not significantly change the catabolite repression of the target phi(sdh-lacZ) operon, in which lacZ is fused to a structural gene for succinate dehydrogenase, nor did the mutations strikingly influence the pattern of excretion products during glucose fermentation. The presence of arcA+ in a multicopy plasmid restored anaerobic repression in arcB mutants, as indicated by the expression of phi(sdh-lacZ). The arcB product might be a sensor protein for the redox or energy state of the arc regulatory system.  相似文献   

17.
Acid phosphatase (ACP) activity in common bean grown with or without 1.5 mM of phosphate has been examined. Leaves and root nodules responded to the absence of an exogenous phosphate source with an increase in ACP activity. Increases in enzyme activity were not associated with the synthesis of new isoforms of the enzyme. We partially purified and characterized the ACPs, which consisted of three proteins, one of leaf and two of nodule. Proteins of leaf migrated at 72 and 51 kDa in SDS-PAGE, whereas that of nodule migrated at 72, 49, 41 and 34 kDa. Enzymes of both organs had a pH optimum of 5.6, and were relatively heat stable. The enzymes exhibit a broad substrate selectivity, with maximal activity obtained with alpha-naphthyl-phosphate, ribulose 1,5-bisphosphate and p-nitrophenyl-phosphate (p-NPP). Potent inhibition by Zn2+, Hg2+, Cu2+, Pb2+, Al3+ and (MoO4)2- was observed.  相似文献   

18.
Human red cell acid phosphatase isozymes encoded by three alleles (ACP1*A, ACPI*B and ACP1*C), each of which generates two isozymes, (f) and (s), were purified to homogeneity. The molecular mass of the six isozymes (Af, As, Bf, Bs, Cf and Cs) was estimated to be 17-18 kDa, the mass of the f isozymes probably being slightly higher than that of the s isozymes. It was indicated that the isozymes react with p-nitrophenyl phosphate in the mono anionic state, and that a group with a pKa value of about 6, which may be histidine, is of importance for the catalytic function of the s isozymes. Significant differences between the f and s isozymes were observed with respect to specific activity. Km (p-nitrophenyl phosphate), Ki (p-aminobenzylphosphonic acid), amino acid composition, stability in the presence of urea, thermal stability, retention time in size-exclusion chromatography of the native isozymes and migration in sodium dodecyl sulphate polyacrylamide gel electrophoresis, In contrast, identical or similar properties were observed for the three genetically different f isozymes, and the same was the case for the three s isozymes. It is suggested that the f and s isozymes serve different functions in the cell.  相似文献   

19.
Atmospheric cold plasma (ACP) is a promising nonthermal technology effective against a wide range of pathogenic microorganisms. Reactive oxygen species (ROS) play a crucial inactivation role when air or other oxygen-containing gases are used. With strong oxidative stress, cells can be damaged by lipid peroxidation, enzyme inactivation, and DNA cleavage. Identification of ROS and an understanding of their role are important for advancing ACP applications for a range of complex microbiological issues. In this study, the inactivation efficacy of in-package high-voltage (80 kV [root mean square]) ACP (HVACP) and the role of intracellular ROS were investigated. Two mechanisms of inactivation were observed in which reactive species were found to either react primarily with the cell envelope or damage intracellular components. Escherichia coli was inactivated mainly by cell leakage and low-level DNA damage. Conversely, Staphylococcus aureus was mainly inactivated by intracellular damage, with significantly higher levels of intracellular ROS observed and little envelope damage. However, for both bacteria studied, increasing treatment time had a positive effect on the intracellular ROS levels generated.  相似文献   

20.
The gene that encodes the acyl carrier protein (ACP) of the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor A3(2) was replaced with homologs from the granaticin, oxytetracycline, tetracenomycin, and putative frenolicin polyketide synthase gene clusters. All of the replacements led to expression of functional synthases, and the recombinants synthesized aromatic polyketides similar in chromatographic properties to actinorhodin or to shunt products produced by mutants defective in the actinorhodin pathway. Some regions within the ACP were also shown to be interchangeable and allow production of a functional hybrid ACP. Structural analysis of the most abundant polyketide product of one of the recombinants by electrospray mass spectrometry suggested that it is identical to mutactin, a previously characterized shunt product of an actVII mutant (deficient in cyclase and dehydrase activities). Quantitative differences in the product profiles of strains that express the various hybrid synthases were observed. These can be explained, at least in part, by differences in ribosome-binding sites upstream of each ACP gene, implying either that the ACP concentration in some strains is rate limiting to overall PKS activity or that the level of ACP expression also influences the expression of another enzyme(s) encoded by a downstream gene(s) in the same operon as the actinorhodin ACP gene. These results reaffirm the idea that construction of hybrid polyketide synthases will be a useful approach for dissecting the molecular basis of the specificity of PKS-catalyzed reactions. However, they also point to the need for reducing the chemical complexity of the approach by minimizing the diversity of polyketide products synthesized in strains that produce recombinant polyketide synthases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号