首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Drosophila embryogenesis, motor axons leave the central nervous system (CNS) as two separate bundles, the segmental nerve (SN) and intersegmental nerve (ISN). From these, axons separate (defasciculate) progressively in a characteristic pattern, initially as nerve branches and then as individual axons, to innervate target muscles [1] [2]. This pattern of branching resembles the outgrowth and defasciculation of motor axons from the neural tube of vertebrate embryos. The factors that trigger nerve branching are unknown. In vertebrate limbs, the branched innervation may depend on mesodermal cues, in particular on the connective tissues that organise the muscle pattern [3]. In Drosophila, the muscle pattern is organised by specific mesodermal cells, the founder myoblasts, which initiate the development of individual muscles [4][5][6]. Founder myoblasts fuse with neighbouring non-founder myoblasts and entrain these to a specific muscle programme, which also determines their innervation [4] [7]. In the absence of mesoderm, ISN and SN can form, but motor axons fail to defasciculate from these bundles [7]. The cue(s) for nerve branching therefore lie within the mesoderm, most likely in the muscles and/or in the precursor cells of the adult musculature [8]. Here, we show that founder myoblasts are the source of the cue(s) that are required to trigger defasciculation and targeted growth of motor axons. Moreover, we found that a single founder myoblast can trigger the defasciculation of an entire nerve branch. This suggests that the muscle field is structured into sets of muscles, each expressing a common defasciculation cue for a particular nerve branch.  相似文献   

2.
3.
Reanimation of the hemiparalytic tongue   总被引:2,自引:0,他引:2  
Tongue hemiparesis is the inevitable result when the freshly severed 12th nerve is anastomosed to the trunk of a paralyzed 7th nerve in the technique commonly used by neurosurgeons, head and neck surgeons, otologists, and plastic surgeons to treat unilateral facial paralysis. This author has reactivated hemiparalytic tongues after research on cats. The technique has now been proved to be successful on two human beings. The reanimation is based on a simple Z-plasty of tongue muscle across the midline. Two principles are established: (1) placing a normal muscle in direct contact with a denervated muscle stimulates axons from the normal side to penetrate into the denervated side, eventually restoring function, and (2) transposition of a flap of muscle from the normal side containing extrinsic tongue muscles could provide a motor apparatus to activate the paralytic side. Biopsy slides taken from the paralyzed side of the cat tongues after 18 months showed sprouting of multiple nerves. Nerve sprouting can be found in human tongues 1 year after Z-plasties. The two patients who experienced atrophy and hemiparesis after the 12th-7th nerve hookup regained full range of tongue movements by 2 months and 4 months, respectively, demonstrating that with time, motor axons from the normal side innervated the atrophic muscle side to form new neuromotor junctions resulting in tongue movements. EMGs of the reanimated tongue showed normal activity in both sides of the tongue. Biopsies of the interface between the normal and former paralyzed side taken 1 year later showed nerves crossing the scar barrier. Apparently, the role of additional extrinsic muscle to the paralyzed side played a minor role.  相似文献   

4.
During development, cranial motor neurons extend their axons along distinct pathways into the periphery. For example, branchiomotor axons extend dorsally to leave the hindbrain via large dorsal exit points. They then grow in association with sensory ganglia, to their targets, the muscles of the branchial arches. We have investigated the possibility that pathway tissues might secrete diffusible chemorepellents or chemoattractants that guide cranial motor axons, using co-cultures in collagen gels. We found that explants of dorsal neural tube or hindbrain roof plate chemorepelled cranial motor axons, while explants of cranial sensory ganglia were weakly chemoattractive. Explants of branchial arch mesenchyme were strongly growth-promoting and chemoattractive for cranial motor axons. Enhanced and oriented axon outgrowth was also elicited by beads loaded with Hepatocyte Growth Factor (HGF); antibodies to this protein largely blocked the outgrowth and orientation effects of the branchial arch on motor axons. HGF was expressed in the branchial arches, whilst Met, which encodes an HGF receptor, was expressed by subpopulations of cranial motor neurons. Mice with targetted disruptions of HGF or Met showed defects in the navigation of hypoglossal motor axons into the branchial region. Branchial arch tissue may thus act as a target-derived factor that guides motor axons during development. This influence is likely to be mediated partly by Hepatocyte Growth Factor, although a component of branchial arch-mediated growth promotion and chemoattraction was not blocked by anti-HGF antibodies.  相似文献   

5.
Summary Innervation of the antennal heart, an independent accessory circulatory motor in the head of insects, was investigated in the cockroach Periplaneta americana by use of axonal cobalt filling and transmission electron microscopy. The muscles associated with this organ are innervated by neurones located in a part of the suboesophageal ganglion, generally considered to be formed by the mandibular neuromere. Dorsal unpaired median (DUM) and paired contralateral neurones were stained. The axons of all these neurones run along the circumoesophageal connectives and through the paired nervus corporis cardiaci III into the corpora cardiaca. They pass through these organs forming fine arborizations there and exit anteriorly as a small pair of nerves which terminate at the antennal heart-dilator muscles. Numerous branches of these nerves extend beyond the lateral borders of the large transverse dilator muscle and terminate in the ampullar walls of the antennal heart. These neurosecretory fibres form neurohaemal areas which obviously release their products into the haemolymph, which is pumped into the antennae. The possible functions of the neurones associated with the antennal heart are discussed with respect to both, their role as a modulatory input for the circulatory motor and as a neurohormonal release site.  相似文献   

6.
In vertebrate embryos, motor axons originating from a particular craniocaudal position in the neural tube innervate limb muscles derived from myoblasts of the same segmental level. We have investigated whether this relationship is important for the formation of specific nerve-muscle connections, by altering the segmental origin of muscles and examining their resulting innervation. First, by grafting quail wing somites to a new craniocaudal position opposite the chick wing, we established that the segmental origin of a muscle can be altered: presumptive muscle cells migrated according to their new, rather than their original, somitic level, colonizing a different subset of muscles. However, after reversal of a length of brachial somitic mesoderm along the craniocaudal axis, or exchange or shift of brachial somites, the craniocaudal position of wing muscle motoneurone pools within the spinal cord was undisturbed, despite the new segmental origin of the muscles themselves. While not excluding the possibility that muscles and their motor nerves are labelled segmentally, we conclude that specific motor axon guidance in the wing does not depend upon the existence of such labels.  相似文献   

7.
The establishment of synaptic connections between motor neurons and muscle fibers is essential for controlled body movements in any higher organism. The wiring of the neuromuscular system in Drosophila serves as a model system for the identification of key regulatory proteins that control axon guidance and target recognition. Sidestep (Side) is a transmembrane protein of the immunoglobulin superfamily and plays a pivotal role in the coordination of motor axonal guidance decisions, as it functions as a target-derived attractant. Side, however, is expressed in a highly dynamic pattern during embryogenesis, making it difficult to deduce its precise function. We have recently shown that the expression of Side strongly correlates with the actual position of motor axonal growth cones. Motor axons seem to recognize and follow Side-positive surfaces until they reach their target fields. The motor neuronal protein Beaten path Ia (Beat) is required to detect Side. In beat mutant embryos, motor axons are no longer attracted to Side-expressing tissues. In addition, Beat and Side interact biochemically, forming heterophilic adhesion complexes in vitro. Here, I discuss the model that preferential adhesion of Beat-expressing growth cones to Side-labeled substrates could be a powerful mechanism to guide motor axons.  相似文献   

8.
Summary The temperature-sensitive mutation shibire (shi) in Drosophila melanogaster is thought to disrupt membrane recycling processes, including endocytotic vesicle pinch-off. This mutation can perturb the development of nerves and muscles of the adult escape response. After exposure to a heat pulse (6 h at 30° C) at 20 h of pupal development, adults have abnormal flight muscles. Wing depressor muscles (DLM) are reduced in number from the normal six to one or two fibers, and are composed of enlarged fibers that appear to represent fiber fusion; large spaces devoid of muscle fibers suggested fiber deletion. The normal five motor axons are present in the peripheral nerve PDMN near the ganglion. However, while some motor axons pass dorsally to the extant fibers, other motor axons lacking end targets pass into an abnormal posterior branch and terminate in a neuroma, i.e., a tangle of axons and glia without muscle target tissue. Hemisynapses are common in axons of the proximal PDMN and within the neuroma, but they are rarely seen in control (no heat pulse) shi or wild-type flies. All surviving muscle fibers are innervated; no muscle tissue exists without innervation. Fibrillar fine structure and neuromuscular synapses appear normal. Fused fibers have dual innervation, suggesting correct and specific matching of target tissue and motor axons. Motor axons lacking target fibers do not innervate erroneous targets but instead terminate in the neuroma. These results suggest developmental constraints and rules, which may contribute to the orderly, stereotyped development in the normal flight system. The nature of the anomalies inducible in the flight motor system in shi flies implies that membrane recycling events at about 20 h of pupal development are critical to the formation of the normal adult nerve-muscle pattern for DLM flight muscles.  相似文献   

9.
The zebrafish ennui mutation was identified from a mutagenesis screen for defects in early behavior. Homozygous ennui embryos swam more slowly than wild-type siblings but normal swimming recovered during larval stages and homozygous mutants survived until adulthood. Electrophysiological recordings from motoneurons and muscles suggested that the motor output of the CNS following mechanosensory stimulation was normal in ennui, but the synaptic currents at the neuromuscular junction were significantly reduced. Analysis of acetylcholine receptors (AChRs) in ennui muscles showed a marked reduction in the size of synaptic clusters and their aberrant localization at the myotome segment borders of fast twitch muscle. Prepatterned, nerve-independent AChR clusters appeared normal in mutant embryos and dispersed upon outgrowth of motor axons onto the muscles. Genetic mosaic analysis showed that ennui is required cell autonomously in muscle fibers for normal synaptic localization of AChRs. Furthermore, exogenous agrin failed to induce AChR aggregation, suggesting that ennui is crucial for agrin function. Finally, motor axons branched more extensively in ennui fast twitch muscles especially in the region of the myotome borders. These results suggest that ennui is important for nerve-dependent AChR clustering and the stability of axon growth.  相似文献   

10.
11.
Zebrafish primary motor axons extend along stereotyped pathways innervating distinct regions of the developing myotome. During development, these axons make stereotyped projections to ventral and dorsal myotome regions. Caudal primary motoneurons, CaPs, pioneer axon outgrowth along ventral myotomes; whereas, middle primary motoneurons, MiPs, extend axons along dorsal myotomes. Although the development and axon outgrowth of these motoneurons has been characterized, cues that determine whether axons will grow dorsally or ventrally have not been identified. The topped mutant was previously isolated in a genetic screen designed to uncover mutations that disrupt primary motor axon guidance. CaP axons in topped mutants fail to enter the ventral myotome at the proper time, stalling at the nascent horizontal myoseptum, which demarcates dorsal from ventral axial muscle. Later developing secondary motor nerves are also delayed in entering the ventral myotome whereas all other axons examined, including dorsally projecting MiP motor axons, are unaffected in topped mutants. Genetic mosaic analysis indicates that Topped function is non-cell autonomous for motoneurons, and when wild-type cells are transplanted into topped mutant embryos, ventromedial fast muscle are the only cell type able to rescue the CaP axon defect. These data suggest that Topped functions in the ventromedial fast muscle and is essential for motor axon outgrowth into the ventral myotome.  相似文献   

12.
The role of the pectoral fin bud for outgrowth by fin axons was assessed by ablation of pectoral fin buds and by transplantation of fin buds to ectopic sites in the embryos of the Japanese medaka fish (Oryzias latipes). Normally nerves from segments 1-4 (S1-4) and less frequently the S5 nerve converged at the base of the fin bud by extending toward the fin bud on the ventral surface of the axial muscles (H. Okamoto and J. Y. Kuwada, 1991, Dev. Biol. 146). Following ablation of the fin bud before motor growth cones have begun to extend laterally, nerves in S1-5 followed a trajectory down the middle of each segment parallel to the borders of the metamerically arranged axial muscles rather than converging. This trajectory was similar to that of more posterior segmental nerves which do not converge toward the fin bud. When fin buds were transplanted to more posterior segments, nerves from S1-5 often changed their trajectories and extended to the base of ectopic buds. Furthermore, motor nerves from segments posterior to S5, which normally do not innervate the fin bud, also extended to the ectopic fin bud. When faced with both the host and ectopic fin bud, motor nerves extended to either fin bud or branched and extended to both fin buds. These results demonstrate that the early fin bud is necessary for correct outgrowth of fin nerves and suggest that the fin bud normally attracts fin nerves to its base. One possible mechanism for the attraction of motor growth cones by the fin bud is a long distance cue emitted by the fin bud.  相似文献   

13.
An Attempt to Account for the Diversity of Crustacean Muscles   总被引:1,自引:1,他引:0  
Crustacean muscles are known to contain muscle fibers of variableproperties and to be innervated by phasic and/or tonic motoneuronswhich may possess synapses of diverse physiological properties.Frequently, phasic motor axons innervate short-sarcomere phasicmuscle fibers and tonic motor axons innervate long-sarcomeretonic muscle fibers, but some muscles receiving a single (tonic)motor axon contain both phasic and tonic muscle fibers. Althoughit is not known whether neural trophic influences are involvedin muscle differentiation, some neural trophic effects havebeen found in crustaceans, and it is reasonable to assume thatsuch influences may be involved in establishing the definitiveproperties of the muscle. Several other postulates must be made:(1) Phasic and tonic motor axons differ in their trophic effectiveness:(2) muscle fibers innervated relatively early in developmentby a tonic motor axon acquire the properties of tonic musclefibers, while those innervated later become intermediate orphasic muscle fibers; (3) the developmental stage of a growingor regenerating axon terminal plays a role in determinationof synaptic properties. Studies on regenerating limb buds supportthe hypothesis, which can account for the genesis of all observedtypes of crustacean neuromuscular system. Further experimentalwork is necessary to test the hypothesis.  相似文献   

14.
Sensory or motor "baby-sitting" has been proposed as a clinical strategy to preserve muscle integrity if motion-specific axons must regenerate over a long distance to reach denervated target muscles. Denervated muscles are innervated temporarily by using axons from nearby sensory or motor nerves. After motion specific motor axons have reached the target, the baby-sitter nerve is severed and motion-specific axons are directed to the target. Although this strategy minimizes denervation time, the requisite second episode of denervation and reinnervation might be deleterious to muscle contractile function. This study was designed to test the hypothesis that two sequential episodes of skeletal muscle denervation and reinnervation result in greater force and power deficits than a single peripheral nerve injury and repair. Adult Lewis rats underwent either transection and epineurial repair or sham exposure of the left peroneal nerve. After a 4-month recovery period, the contractile properties of the extensor digitorum longus muscle of the sham exposure group (control, n = 9) and one of the nerve division and repair groups (repair group 1, n = 9) were evaluated with measurements of the maximum tetanic isometric force, peak power, and maximal sustained power. A third group of rats underwent a second cycle of nerve division and repair (repair group 2, n = 9) at this same time point. Four months postoperatively, contractile properties of the extensor digitorum longus muscles were evaluated. Maximum tetanic isometric force and peak power were significantly reduced in repair group 2 rats as compared with repair group 1 and control rats. Maximal sustained power was not significantly different between the groups. These data support our working hypothesis that skeletal muscle contractile function is adversely affected by two cycles of denervation and reinnervation as compared with a single episode of nerve division and repair.  相似文献   

15.
Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics.  相似文献   

16.
To establish the existence of a central pattern generator for feeding in the larval central nervous system of two Drosophila species, the gross anatomy of feeding related muscles and their innervation is described, the motor units of the muscles identified and rhythmic motor output recorded from the isolated CNS. The cibarial dilator muscles that mediate food ingestion are innervated by the frontal nerve. Their motor pathway projects from the brain through the antennal nerves, the frontal connectives and the frontal nerve junction. The mouth hook elevator and depressor system is innervated by side branches of the maxillary nerve. The motor units of the two muscle groups differ in amplitude: the elevator is always activated by a small unit, the depressor by a large one. The dorsal protractors span the cephalopharyngeal skeleton and the body wall hence mediating an extension of the CPS. These muscles are innervated by the prothoracic accessory nerve. Rhythmic motor output produced by the isolated central nervous system can simultaneously be recorded from all three nerves. The temporal pattern of the identified motor units resembles the sequence of muscle contractions deduced from natural feeding behavior and is therefore considered as fictive feeding. Phase diagrams show an almost identical fictive feeding pattern is in both species.  相似文献   

17.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

18.
19.
Motor axon projections are topographically ordered. Medial motor column axons project to axial muscles, whereas lateral motor column axons project to limb muscles and, along the rostrocaudal axis of the animal, the more rostral motor neuron pools project to more rostral muscle targets. We have shown that EphA3 is specifically expressed in the developing medial motor column and have postulated that EphA3 might be responsible for directing their axons to axial muscle targets. This hypothesis was supported by our demonstration that EphA3 can direct retinal ganglion cell axon targeting and by studies of ephrin-A5(-/-) mutants that show that EphA receptor signaling controls the topographic innervation of the acromiotrapezius. To test the role of EphA3 in motor axon guidance, we generated an EphA3 null mutant. Retrograde labeling studies in EphA3(-/-) embryos and adults indicate that, contrary to our predictions, EphA3 is not necessary to direct motor axons to axial muscle targets. Our results also demonstrate that ephrin A5's ability to direct topographic innervation of the acromiotrapezius must be mediated through EphA receptors other than, or in addition to, EphA3.  相似文献   

20.
Summary The intramuscular nerves and myoneural junctions in the rat rectus superior, medialis and inferior muscles from 10 hours to about 10 days after section of the trigeminal and oculomotor nerves were studied with the electron microscope. Two different kinds of myoneural junctions are to be observed; one type derives from myelinated nerves and is similar to the ordinary myoneural junctions (motor end plates) of other striated skeletal muscles, while the other type derives from unmyelinated nerves, is smaller in size and has many myoneural synapses distributed along a single extrafusal muscle fibre.Section of the trigeminal nerve caused no changes in the myoneural synapses. After section of the oculomotor nerve degenerative changes occur in both the myelinated and unmyelinated nerves and in both types of myoneural junctions. In the axon terminals of both the myelinated and unmyelinated nerves the earliest changes are to be observed 10 to 15 hours after section of the nerve. First, swelling of the axoplasm, fragmentation of microtubules and microfilaments and swelling of mitochondria takes place, somewhat later agglutination of the axonal vesicles and mitochondria. The axon terminals are separated from the postsynaptic muscle membrane by hypertrophied teloglial cells about 24 hours after section of the nerve. The debris of the axon terminals is usually digested by the teloglial cells within 42 to 48 hours in both types of myoneural junction.Changes in the postsynaptic membrane are observed in the myoneural junctions of the unmyelinated nerves as disappearance of the already earlier irregular infoldings, whereas no changes take place in the infoldings of the motor end plates. The postsynaptic sarcoplasm and its ribosomal content increase somewhat.The earliest changes occur along unmyelinated axons 10 to 15 hours and along myelinated axons 15 to 24 hours after nerve section. The unmyelinated axons are usually totally digested within 48 hours, whereas the myelinated axons took between 48 hours and 4 days to disappear. The degeneration, fragmentation and digestion of the myelin sheath begin between 24 and 42 hours and still continues 10 days after the operation.The results demonstrate that in the three muscles studied structures underlying the physiologically well known double innervation of the extraoccular muscles are all part of the oculomotor system.We are grateful to Professor Antti Telkkä, M. D. Head of the Electron Microscope Laboratory, University of Helsinki, for permission to use the facilities of the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号