首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escape from TGF-beta inhibition of proliferation is a hallmark of multiple cancers including lung cancer. We explored the role of ELF, crucial TGF-beta adaptor protein identified from endodermal progenitor cells, in lung carcinogenesis and cell-cycle regulation. Interestingly, elf-/- mice develop multiple defects that include lung, liver, and cardiac abnormalities. Four out of 6 lung cancer and mesothelioma cell lines displayed deficiency of ELF expression with increased CDK4 expression. Immunohistochemistry and Western blot analysis of primary human lung cancers also showed decreased ELF expression and overexpression of CDK4. Moreover, rescue of ELF in ELF-deficient cell lines decreased the expression of CDK4 and resulted in accumulation of G1/S checkpoint arrested cells. These results suggest that disruption in TGF-beta signaling mediated by loss of ELF in lung cancer leads to cell-cycle deregulation by modulating CDK4 and ELF highlights a key role of TGF-beta adaptor protein in suppressing early lung cancer.  相似文献   

2.
The Hedgehog pathway plays a crucial role in growth and patterning during embryonic development and is involved in stem cell maintenance and proliferation in adult tissues. Mutations that increase the overall activity of the pathway are often associated with a higher incidence of cancers. This article focuses on the mutations, misfoldings and deregulations of the Hedgehog pathway proteins that have been reported to be involved in different tumors, and on small molecules targeting these proteins shown to slow down the growth of certain tumors in various animal models. We propose that proteomics could be a powerful tool to identify new targets of the Hedgehog pathway, enabling the discovery of effective and novel treatments for cancers.  相似文献   

3.
4.
The transforming growth factor-beta (TGF-beta)-Smad signaling pathway has an important role in carcinogenesis. To study the frequency and mechanism of functional impairment of this pathway in human gastrointestinal cancers, we used a reporter assay to examine the response of 38 cell lines (11 colorectal, 9 pancreatic, 10 gastric, and 8 hepatic cancers) to TGF-beta. We then analyzed TGF-beta type II receptor (T beta RII) gene, immunoblots of Smad4, and restoration of the pathway by rescuing T beta R or Smad. We observed impaired signaling in 91% of colorectal, 67% of pancreatic, and 40% of gastric cancer cell lines, but in none of the hepatic cancer cells. We suggest that this pathway does not function as a tumor suppressor in hepatic carcinogenesis. The impairment is due to inactivation of T beta RII and Smad4 in colorectal and pancreatic cancers. However, because the signal was not recovered by rescuing T beta R or Smad genes in TGF-beta-response-defective gastric cancer cell lines, we suggest that novel molecules or mechanisms are involved in the impaired pathway in some gastric cancers.  相似文献   

5.
6.
The Smad2 protein plays an essential role in the transforming growth factor-beta (TGF-beta) signaling pathway. This pathway mediates growth inhibitory signals from the cell surface to the nucleus. Although Smad2 protein is significantly mutated in human cancers, there is no definitive evidence implicating Smad2 as a tumor-suppressor gene. Here we show that overexpression of the tumor-derived missense mutation Smad2.D450E, an unphosphorylable form of Smad2 found in colorectal and lung cancers, did not abolish the TGF-beta-mediated growth arrest, suggesting that resistance to the growth-inhibiting effects of TGF-beta exhibited by human tumors cannot be linked to the inactivation of Smad2 protein. In contrast, overexpression of Smad2.D450E induces cellular invasion, and this effect was enhanced by TGF-beta. A similar invasive phenotype was obtained in cells expressing another inactivating mutation in Smad2 (Smad2.P445H) found in colorectal cancer. These findings indicate that genetic defects in Smad2 are sufficient to confer the invasion-promoting effect of TGF-beta and reveal that TGF-beta acts through Smad2 to induce cellular invasion by a novel mechanism that is independent of Smad2 phosphorylation by the activated TGF-beta type I receptor.  相似文献   

7.
The Hedgehog-Gli (Hh-Gli) signaling pathway controls many aspects of tissue patterning, cell proliferation, differentiation and regeneration and regulates cell number in various organs. In adults, the Hh-Gli pathway remains active in a number of stem cells and regenerating tissues. Inappropriate and uncontrolled HH-GLI pathway activation has been demonstrated in a variety of human cancers. Three recent papers show that components of the pathway are expressed in human prostate tumors and, more importantly, that prostate cancers depend on sustained HH-GLI signaling. These data raise the possibility of a new therapeutic approach to treat this often lethal disease.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) has gained broad recognition as an important survival factor for epithelial cells in numerous tissues. The IGF-I receptor signaling pathway is deregulated in the majority of carcinomas, and such deregulation has also been reported to be tightly associated with enhanced tumor progression and metastasis. One of the key proteins that transduces IGF-I signals and is phospho-activated downstream of the IGF-I receptor, is the non-receptor serine/threonine kinase proto-oncogene protein kinase B (PKB, also known as Akt). This kinase serves as a major molecular node to control the function of many cell survival and death proteins through phosphorylation-mediated protein modification. The end result of the activation of Akt is enhanced cell survival and proliferation, pre-requisites for malignant transformation. Recent studies show that IGF-I signals cross-talk at multiple levels with various components of the TGF-beta signaling pathway, which depending on context may function either as tumor suppressor or as tumor promoter. Thus, a better understanding of how the IGF-I and TGF-beta signaling pathways are mutually interconnected is likely to unveil novel targets for the therapeutic intervention of many cancers.  相似文献   

9.
The continuous and steady supply of transient cell types such as skin, blood and gut depends crucially on the controlled proliferation of stem cells and their transit amplifying progeny. Although it is thought that signaling to and from support cells might play a key role in these processes, few signals that might mediate this interaction have been identified. During spermatogenesis in Drosophila, the asymmetric division of each germ line stem cell results in its self-renewal and the production of a committed progenitor that undergoes four mitotic divisions before differentiating while remaining in intimate contact with somatic support cells [1]. Previous data have suggested that TGF-beta signaling pathway components punt and schnurri are required in the somatic support cells to restrict germ cell proliferation. Here, by contrast, we show that the maintenance and proliferation of germ line stem cells and their progeny depends upon their ability to transduce the activity of a somatically expressed TGF-beta ligand, the BMP5/8 ortholog Glass Bottom Boat. We further demonstrate that TGF-beta signaling represses the expression of the Bam protein, which is both necessary and sufficient for germ cell differentiation, thereby maintaining germ line stem cells and spermatogonia in their proliferative state.  相似文献   

10.
Over the past decade, the Hippo signaling cascade has been linked to organ size regulation in mammals. Indeed, modulation of the Hippo pathway can have potent effects on cellular proliferation and/or apoptosis and a deregulation of the pathway often leads to tumor development. Importantly, emerging evidence indicates that the Hippo pathway can modulate its effects on tissue size by the regulation of stem and progenitor cell activity. This role has recently been associated with the central position of the pathway in sensing spatiotemporal or mechanical cues, and translating them into specific cellular outputs. These results provide an attractive model for how the Hippo cascade might sense and transduce cellular ‘neighborhood’ cues into activation of tissue-specific stem or progenitors cells. A further understanding of this process could allow the development of new therapies for various degenerative diseases and cancers. Here, we review current and emerging data linking Hippo signaling to progenitor cell function.  相似文献   

11.
In contrast to the extensive studies on the role of transforming growth factor-beta (TGF-beta) in regulating cell proliferation, differentiation, and apoptosis over the past decade, relatively little is known about the exact role of TGF-beta signaling in regulating host response in infectious diseases. Most of the recent studies have suggested that TGF-beta inhibits macrophage activation during infections with pathogens such as Trypanosoma cruzi and Leishmania, thereby favoring virulence. In certain situations, however, there is also evidence that TGF-beta has been correlated with enhanced resistance to microbes such as Candida albicans, thus benefiting the host. Despite these distinct observations that mainly focused on macrophages, little is known about how TGF-beta regulates host primary innate defensive responses, such as up-regulation of mucin, in the airway epithelial cells. Moreover, how the TGF-beta-Smad signaling pathway negatively regulates p38 mitogen-activated protein kinase (MAPK), a key pathway mediating host response to bacteria, still remains largely unknown. Here we show that nontypeable Haemophilus influenzae, a major human bacterial pathogen of otitis media and chronic obstructive pulmonary diseases, strongly induces up-regulation of MUC5AC mucin via activation of the Toll-like receptor 2-MyD88-dependent p38 path-way. Activation of TGF-beta-Smad signaling, however, leads to down-regulation of p38 by inducing MAPK phophatase-1, thereby acting as a negative regulator for MUC5AC induction. These studies may bring new insights into the novel role of TGF-beta signaling in attenuating host primary innate defensive responses and enhance our understanding of the signaling mechanism underlying the cross-talk between TGF-beta-Smad signaling pathway and the p38 MAPK pathway.  相似文献   

12.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

13.
Transforming growth factor-beta (TGF-beta) signaling is critical in a variety of biological processes such as cell proliferation, differentiation, and apoptosis. TGF-beta signaling is mediated by a group of proteins including TGF-beta receptors and Smads. It is known that different cells can exhibit different sensitivities to TGF-beta. Several molecular mechanisms, such as the differential expression of the receptor levels, have been suggested as contributing to these differences. Here, we report evidence for a novel mechanism of regulating TGF-beta sensitivity that depends on the role of CHIP (carboxyl terminus of Hsc70-interacting protein) in regulating the basal level of Smad3 via the ubiquitin-dependent degradation pathway. First, using a luciferase assay we found that overexpression of CHIP inhibited TGF-beta signaling, whereas silencing CHIP expression by small interfering RNAs led to increased TGF-beta signaling sensitivity. Second, based on the results of cell proliferation assays and JunB expression, we found that TGF-beta signaling could be abolished by stably overexpressing CHIP. Third, in those cell lines with stably expressed CHIP, we observed that the Smad3 protein level was dramatically decreased. Finally, we demonstrated that CHIP served as a U-box dependent E3 ligase that can directly mediate ubiquitination and degradation of Smad3 and that this action of CHIP was independent of TGF-beta signaling. Taken together, these findings suggest that CHIP can modulate the sensitivity of the TGF-beta signaling by controlling the basal level of Smad3 through ubiquitin-mediated degradation.  相似文献   

14.
We recently reported that transforming growth factor (TGF)-beta induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-beta actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-beta-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-beta. We demonstrate here that RhoA signaling is critical to TGF-beta-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle alpha-actin, SM22alpha, and calponin in TGF-beta-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-beta-treated cells. RhoA signaling was activated as early as 5 min following TGF-beta addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-beta-induced SMC differentiation.  相似文献   

15.
16.
The hedgehog (Hh) signaling pathway is a key regulator during embryonic development, while in adults, it has limited functions such as stem cell maintenance and tissue repair. The aberrant activity of the Hh signaling in adults has been linked to numerous human cancers. Inhibition of Hh signaling therefore represents a promising approach toward novel anticancer therapies. The Smoothened (Smo) receptor mediates Hh signaling. Here we report a new series of Smo antagonists which were obtained by a scaffold hopping strategy. Compounds from this new scaffold demonstrated decent inhibition of Hh pathway signaling. The new scaffold can serve as a starting point for further optimization.  相似文献   

17.
Transforming growth factor beta (TGF-beta) modulates a number of cellular phenotypes as divergent as growth stimulation and growth inhibition. Although the Smad pathway is critical for many of these responses, recent evidence indicates that Smad-independent pathways may also have a critical role. One such protein previously shown to regulate TGF-beta action independent of the Smad proteins is the c-Abl nonreceptor tyrosine kinase. In the current study we determined that TGF-beta receptor signaling activates c-Abl kinase activity in a subset of fibroblast but not epithelial cultures. This cell type-specific response occurs in a membrane-proximal locale independent of receptor internalization and upstream of dynamin action. Although c-Abl activation by TGF-beta is independent of Smad2 or Smad3, it is prevented by inhibitors of phosphatidylinositol 3-kinase or PAK2. Thus, c-Abl represents a target downstream of phosphatidylinositol 3-kinase-activated PAK2, which differentiates TGF-beta signaling in fibroblasts and epithelial cell lines and integrates serine/threonine receptor kinases with tyrosine kinase pathways.  相似文献   

18.
Downregulation of Ski and SnoN co-repressors by anisomycin   总被引:1,自引:0,他引:1  
Proteasome pathway regulates TGF-beta signaling; degradation of activated Smad2/3 and receptors turns TGF-beta signal off, while degradation of negative modulators such as Ski and SnoN maintains the signal. We have found that anisomycin is able to downregulate Ski and SnoN via proteasome as TGF-beta does, but through a mechanism independent of Smad activation. The mechanism used by anisomycin to downregulate Ski and SnoN is also independent of MAPK activation and protein synthesis inhibition. TGF-beta signal was the only pathway described causing Ski and SnoN degradation, thus this new effect of anisomycin on endogenous Ski and SnoN proteins suggests alternative processes to downregulate these negative modulators of TGF-beta signaling.  相似文献   

19.
The statins (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c‐MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid‐lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Metastasis is a primary cause of mortality due to cancer. Early metastatic growth involves both a remodeling of the extracellular matrix surrounding tumors and invasion of tumors across the basement membrane. Up-regulation of extracellular matrix degrading proteases such as urokinase plasminogen activator (uPA) and matrix metalloproteinases has been reported to facilitate tumor cell invasion. Autocrine transforming growth factor-beta (TGF-beta) signaling may play an important role in cancer cell invasion and metastasis; however, the underlying mechanisms remain unclear. In the present study, we report that autocrine TGF-beta supports cancer cell invasion by maintaining uPA levels through protein secretion. Interestingly, treatment of paracrine/exogenous TGF-beta at higher concentrations than autocrine TGF-beta further enhanced uPA expression and cell invasion. The enhanced uPA expression by exogenous TGF-beta is a result of increased uPA mRNA expression due to RNA stabilization. We observed that both autocrine and paracrine TGF-beta-mediated regulation of uPA levels was lost upon depletion of Smad4 protein by RNA interference. Thus, through the Smad pathway, autocrine TGF-beta maintains uPA expression through facilitated protein secretion, thereby supporting tumor cell invasiveness, whereas exogenous TGF-beta further enhances uPA expression through mRNA stabilization leading to even greater invasiveness of the cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号