首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary forests constitute a substantial proportion of tropical forestlands. These forests occur on both public and private lands and different underlying environmental variables and management regimes may affect post‐abandonment successional processes and resultant forest structure and biodiversity. We examined whether differences in ownership led to differences in forest structure, tree diversity, and tree species composition across a gradient of soil fertility and forest age. We collected soil samples and surveyed all trees in 82 public and 66 private 0.1‐ha forest plots arrayed across forest age and soil gradients in Guanacaste, Costa Rica. We found that soil fertility appeared to drive the spatial structure of public vs. private ownership; public conservation lands appeared to be non‐randomly located on areas of lower soil fertility. On private lands, areas of crops/pasture appeared to be non‐randomly located on higher soil fertility areas while forests occupied areas of lower soil fertility. We found that forest structure and tree species diversity did not differ significantly between public and private ownership. However, public and private forests differed in tree species composition: 11 percent were more prevalent in public forest and 7 percent were more prevalent in private forest. Swietenia macrophylla, Cedrela odorata, and Astronium graveolens were more prevalent in public forests likely because public forests provide stronger protection for these highly prized timber species. Guazuma ulmifolia was the most abundant tree in private forests likely because this species is widely consumed and dispersed by cattle. Furthermore, some compositional differences appear to result from soil fertility differences due to non‐random placement of public and private land holdings with respect to soil fertility. Land ownership creates a distinctive species composition signature that is likely the result of differences in soil fertility and management between the ownership types. Both biophysical and social variables should be considered to advance understanding of tropical secondary forest structure and biodiversity.  相似文献   

2.
Aims Plants are able to influence their growing environment by changing biotic and abiotic soil conditions. These soil conditions in turn can influence plant growth conditions, which is called plant–soil feedback. Plant–soil feedback is known to be operative in a wide variety of ecosystems ranging from temperate grasslands to tropical rain forests. However, little is known about how it operates in arid environments. We examined the role of plant–soil feedbacks on tree seedling growth in relation to water availability as occurring in arid ecosystems along the west coast of South America.Methods In a two-phased greenhouse experiment, we compared plant–soil feedback effects under three water levels (no water, 10% gravimetric moisture and 15% gravimetric moisture). We used sterilized soil inoculated with soil collected from northwest Peru (Prosopis pallida forests) and from two sites in north-central Chile (Prosopis chilensis forest and scrublands without P. chilensis).Important findings Plant–soil feedbacks differed between plant species and soil origins, but water availability did not influence the feedback effects. Plant–soil feedbacks differed in direction and strength in the three soil origins studied. Plant–soil feedbacks of plants grown in Peruvian forest soil were negative for leaf biomass and positive for root length. In contrast, feedbacks were neutral for plants growing in Chilean scrubland soil and positive for leaf biomass for those growing in Chilean forest soil. Our results show that under arid conditions, effects of plant–soil feedback depend upon context. Moreover, the results suggest that plant–soil feedback can influence trade-offs between root growth and leaf biomass investment and as such that feedback interactions between plants and soil biota can make plants either more tolerant or vulnerable to droughts. Based on dissecting plant–soil feedbacks into aboveground and belowground tissue responses, we conclude that plant–soil feedback can enhance plant colonization in some arid ecosystems by promoting root growth.  相似文献   

3.
森林生态系统碳循环对全球氮沉降的响应   总被引:4,自引:0,他引:4  
森林土壤和植被储存着全球陆地生态系统大约46%的碳,在全球碳平衡中起着非常重要的作用。过去几十年来,森林生态系统的碳循环和碳吸存受到了全球氮沉降的深刻影响,因为氮沉降改变了陆地生态系统的生产力和生物量积累。以欧洲和北美温带森林区域开展的研究为基础,综述了氮沉降对植物光合作用、土壤呼吸、土壤DOM及林木生长的影响特征和机理,探讨了森林生态系统碳动态对氮沉降响应的不确定性因素。热带森林C、N循环与大部分温带森林不同,人为输入的氮对热带生态系统过程的影响也可能不同,因此指出了在热带地区开展碳氮循环耦合研究的必要性和紧迫性。  相似文献   

4.
苏北沿海防护林对土壤渗透性的影响   总被引:5,自引:0,他引:5  
苏北沿海防护林对土壤渗透性的影响*仇才楼梁珍海康立新(江苏省沿海防风林试验站,射阳224300)(江苏省林业科学研究所,南京211153)胡海波徐春(南京林业大学森林资源与环境学院,210037)(江苏省国营射阳林场,224300)Influence...  相似文献   

5.
Forest turnover rates follow global and regional patterns of productivity   总被引:2,自引:0,他引:2  
Using a global database, we found that forest turnover rates (the average of tree mortality and recruitment rates) parallel broad-scale patterns of net primary productivity. First, forest turnover was higher in tropical than in temperate forests. Second, as recently demonstrated by others, Amazonian forest turnover was higher on fertile than infertile soils. Third, within temperate latitudes, turnover was highest in angiosperm forests, intermediate in mixed forests, and lowest in gymnosperm forests. Finally, within a single forest physiognomic type, turnover declined sharply with elevation (hence with temperature). These patterns of turnover in populations of trees are broadly similar to the patterns of turnover in populations of plant organs (leaves and roots) found in other studies. Our findings suggest a link between forest mass balance and the population dynamics of trees, and have implications for understanding and predicting the effects of environmental changes on forest structure and terrestrial carbon dynamics.  相似文献   

6.
Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.  相似文献   

7.
Soil respiration (SR) in forests contributes significant carbon dioxide emissions from terrestrial ecosystems and is highly sensitive to environmental changes, including soil temperature, soil moisture, microbial community, surface litter, and vegetation type. Indeed, a small change in SR may have large impacts on the global carbon balance, further influencing feedbacks to climate change. Thus, detailed characterization of SR responses to changes in environmental conditions is needed to accurately estimate carbon dioxide emissions from forest ecosystems. However, data for such analyses are still limited, especially in tropical forests of Southeast Asia where various stages of forest succession exist due to previous land‐use changes. In this study, we measured SR and some environmental factors including soil temperature (ST), soil moisture (SM), and organic matter content (OM) in three successional tropical forests in both wet and dry periods. We also analyzed the relationships between SR and these environmental variables. Results showed that SR was higher in the wet period and in older forests. Although no response of SR to ST was found in younger forest stages, SR of the old‐growth forest significantly responded to ST, plausibly due to the nonuniform forest structure, including gaps, that resulted in a wide range of ST. Across forest stages, SM was the limiting factor for SR in the wet period, whereas SR significantly varied with OM in the dry period. Overall, our results indicated that the responses of SR to environmental factors varied temporally and across forest succession. Nevertheless, these findings are still preliminary and call for detailed investigations on SR and its variations with environmental factors in Southeast Asian tropical forests where patches of successional stages dominate.  相似文献   

8.
Decomposing litter provides critical nutrients for plants, particularly in nutrient-poor ecosystems such as tropical forests. We hypothesised that decomposing litter improves the performance of a variety of tropical tree seedlings, and that this litter effect varies depending on the species of litter present in litter mixtures. We addressed these hypotheses with a large pot experiment manipulating a range of different litter mixtures of contrasting quality and using seedlings of four tree species from the Amazonian forest of French Guiana. In contrast to our initial hypothesis, decomposing litter had either neutral or negative impacts on seedling growth, despite strongly different growth rates, biomass allocation patterns and leaf and root traits among tree species. Tree species varied in their responses to litter additions, which were further modified by species identity of the added litter. Our data show litter species-specific effects on growth, biomass allocation and leaf and root traits of tropical tree seedlings. These results suggest that a net nutrient release from decomposing litter does not necessarily improve tree seedling growth, even under nutrient-limiting conditions. In conclusion, litter layer composition may affect seedling establishment and recruitment success beyond litter-derived plant nutrient availability, which may contribute to tree species composition and dynamics in the studied tropical forest.  相似文献   

9.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

10.
杨浩  史加勉  郑勇 《生态学报》2024,44(7):2734-2744
森林生态系统在全球碳(C)储量中占据极为重要的地位。菌根真菌广泛存在于森林生态系统中,在森林生态系统C循环过程中发挥重要的作用。阐述了不同菌根类型真菌在森林生态系统C循环过程中的功能,对比了温带/北方森林与热带/亚热带森林中菌根真菌介导的C循环研究方面新近取得的研究结果。发现温带和北方森林的外生菌根(EcM)植物对地上生物量C的贡献相对较小,然而是地下C储量的主要贡献者;以丛枝菌根(AM)共生为主的热带/亚热带森林地表生物量占比较高,表明AM植被对热带/亚热带森林地上生物量C的贡献相对较大。我们还就全球变化背景下,菌根真菌及其介导的森林生态系统C汇功能,以及不同菌根类型树种影响C循环的机制等进行了总结。菌根真菌通过影响凋落物分解、土壤有机质形成及地下根系生物量,进而影响整个森林生态系统的C循环功能。菌根介导的森林C循环过程很大程度上取决于(优势)树木的菌根类型和森林土壤中菌根真菌的群落结构。最后指出了当前研究存在的主要问题以及未来研究展望。本文旨在明确菌根真菌在森林生态系统C循环转化过程中的重要生态功能,有助于准确地评估森林生态系统C汇现状,为应对全球变化等提供重要的依据。  相似文献   

11.
The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that herbivorous insects can potentially play a strong role in many aspects of mangrove ecology. Moreover, researchers only recently realized that ant–plant interactions may form an important contribution to our understanding of insect–plant dynamics in these habitats. Ants seem to be able to relieve mangroves from important herbivores such as many insects and sesarmid crabs. It thus seems likely that ants have positive effects on mangrove performance.  相似文献   

12.
An alarming and increasing deforestation rate threatens Amazon tropical ecosystems and subsequent degradation due to frequent fires. Agroforestry systems (AFS) may offer a sustainable alternative, reportedly mimicking the plant–soil interactions of the natural mature forest (MF). However, the role of microbial community in tropical AFS remains largely unknown. This knowledge is crucial for evaluating the sustainability of AFS and practices given the key role of microbes in the aboveground–belowground interactions. The current study, by comparing different AFS and successions of secondary and MFs, showed that AFS fostered distinct groups of bacterial community, diverging from the MFs, likely a result of management practices while secondary forests converged to the same soil microbiome found in the MF, by favoring the same groups of fungi. Model simulations reveal that AFS would require profound changes in aboveground biomass and in soil factors to reach the same microbiome found in MFs. In summary, AFS practices did not result in ecosystems mimicking natural forest plant–soil interactions but rather reshaped the ecosystem to a completely different relation between aboveground biomass, soil abiotic properties, and the soil microbiome.  相似文献   

13.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

14.
Pathogens are hypothesized to play an important role in the maintenance of tropical forest plant species richness. Notably, species richness may be promoted by incomplete filling of niche space due interactions of host populations with their pathogens. A potentially important group of pathogens are endophytic fungi, which asymptomatically colonize plants and are diverse and abundant in tropical ecosystems. Endophytes may alter competitive abilities of host individuals and improve host fitness under stress, but may also become pathogenic. Little is known of the impacts of endophytes on niche-space filling of their hosts.Here we evaluate how a widespread fungal endophyte infecting a common tropical palm influences its recruitment and survival in natural ecosystems, and whether this impact is modulated by the abiotic environment, potentially constraining host niche-space filling. Iriartea deltoidea dominates many wet lowland Neotropical forests. Diplodia mutila is a common asymptomatic endophyte in mature plants; however, it causes disease in some seedlings. We investigated the effects of light availability on D. mutila disease expression.We found I. deltoidea seedlings to preferentially occur under shady conditions. Correspondingly, we also found that high light triggers endophyte pathogenicity, while low light favors endosymbiotic development, constraining recruitment of endophyte-infested seedlings to shaded understory by reducing seedling survival in direct light. Pathogenicity of D. mutila under high light is proposed to result from light-induced production of H(2)O(2) by the fungus, triggering hypersensitivity, cell death, and tissue necrosis in the palm. This is the first study to demonstrate that endophytes respond to abiotic factors to influence plant distributions in natural ecosystems; and the first to identify light as a factor influencing where an endophyte is placed on the endosymbiont-pathogen continuum. Our findings show that pathogens can indeed constrain niche-space filling of otherwise successful tropical plant species, providing unoccupied niche space for other species.  相似文献   

15.
Extreme climatic and weather events are increasing in frequency and intensity across the world causing episodes of widespread tree mortality in many forested ecosystems. However, we have a limited understanding about which local factors influence tree mortality patterns, restricting our ability to predict tree mortality, especially within topographically complex tropical landscapes with a matrix of mature and secondary forests. We investigated the effects of two major local factors, topography and forest successional type, on climate‐induced tropical tree mortality patterns using an observational and modeling approach. The northernmost Neotropical dry forest endured an unprecedented episode of frost‐induced tree mortality after the historic February 2011 cold wave hit northwestern Mexico. In a moderately hilly landscape covering mature and secondary tropical dry forests, we surveyed 454 sites for the presence or absence of frost‐induced tree mortality. In addition, across forty‐eight 1 ha plots equally split into the two forest types, we examined 6,981 woody plants to estimate a frost‐disturbance severity metric using the density of frost‐killed trees. Elevation is the main factor modulating frost effects regardless of forest type. Higher occurrence probabilities of frost‐induced tree mortality at lowland forests can be explained by the strong influence of elevation on temperature distribution since heavier cold air masses move downhill during advective frosts. Holding elevation constant, the probability of frost‐induced tree mortality in mature forests was twice that of secondary forests but severity showed the opposite pattern, suggesting a cautious use of occurrence probabilities of tree mortality to infer severity of climate‐driven disturbances. Extreme frost events, in addition to altering forest successional pathways and ecosystem services, likely maintain and could ultimately shift latitudinal and altitudinal range margins of Neotropical dry forests.  相似文献   

16.
Environmental gradients have played a pivotal role in the history and development of plant ecology and are useful for testing ecological and evolutionary theory. Área de Conservación Guanacaste is a spatio-temporal mosaic of forests that have evolved continuously across elevation, topography, soil types, succession, and annual and inter-annual climatic change. Studies of plant ecology across diverse gradients of ACG have shaped functional ecology, successional theory, community assembly, plant–herbivore interactions, among many other fields. In this review, we synthesize the, perhaps overlooked, role plant ecological studies of ACG have had on our understanding of tropical forest dynamics. We outline present-day processes that will have major impacts on forest dynamics of ACG in the future and highlight how ACG will continue to shape future research priorities in plant ecology.  相似文献   

17.
This paper presents a new synthesis of the role of native and non‐native species in diverse pathways and processes that influence forest regeneration on anthropogenic grassland in the moist tropics. Because of altered species composition, abiotic conditions and landscape habitat mosaics, together with human interventions, these successional pathways differ from those seen in pre‐clearing forests. However, representation of different functional life forms of plant (tree, vine, grass, herb and fern) and animal (frugivorous seed disperser, granivorous seed predator, seedling herbivore and carnivore) shows consistent global variation among areas of pasture, intact forest, and post‐grassland regrowth. Biotic webs of interaction involve complex indirect influences and feedbacks, which can account for wide observed variation in regeneration trajectories over time. Important processes include: limitation of tree establishment by dense grasses; recruitment and growth of pioneer pasture trees (shading grasses and facilitating bird‐assisted seed dispersal); and smothering of trees by vines. In these interactions, species’ functional roles are more important than their biogeographic origins. Case studies in eastern Australia show native rain forest plant species diversity in all life forms increasing over time when pioneer trees are non‐native (e.g., Cinnamomum camphora, Solanum mauritianum), concurrent with decreased grass and fern cover and increased abundance of trees and vine tangles. The global literature shows both native and non‐native species facilitating and inhibiting regeneration. However conservation goals are often targeted at removing non‐native species. Achieving large‐scale tropical forest restoration will require increased recognition of their multiple roles, and compromises about allocating resources to their removal.  相似文献   

18.
The conservation of mangroves and other coastal “blue carbon” ecosystems is receiving heightened attention because of recognition of their high ecosystem carbon stocks as well as vast areas undergoing land conversion. However, few studies have paired intact mangroves with degraded sites to determine carbon losses due to land conversion. To address this gap we quantified total ecosystem carbon stocks in mangroves and cattle pastures formed from mangroves in the large wetland complex of the Pantanos de Centla in SE Mexico. The mean total ecosystem carbon stocks of fringe and estuarine tall mangroves was 1358 Mg C/ha. In contrast the mean carbon stocks of cattle pastures was 458 Mg C/ha. Based upon a biomass equivalence of losses from the top 1 m of mangrove soils, the losses in carbon stocks from mangrove conversion are conservatively estimated at 1464 Mg CO2e/ha. These losses were 7-fold that of emissions from tropical dry forest to pasture conversion and 3-fold greater than emissions from Amazon forest to pasture conversion. However, we found that limiting ecosystem carbon stocks differences to the surface 1 m or even 2 m soil depth will miss losses that occurred from deeper horizons. Mangrove conversion to other land uses comes at a great cost in terms of greenhouse gas emissions as well losses of other important ecosystem services.  相似文献   

19.
Seedlings play an important role in the processes of plant community succession. We compared seedling (dbh < 1 cm) species composition and diversity over a chronosequence (18‐, 30‐, 60‐year‐old second growth and old growth forest) after shifting cultivation in a tropical lowland rain forest area on Hainan Island, China. Seedling diversity reached a maximum in the 60‐year‐old second growth forest, which is consistent with the intermediate disturbance hypothesis. With the progression of secondary succession, canopy openness (CO), soil organic matter, soil phosphorus content, and tree abundance showed a general decreasing trend; soil water content and tree basal area showed a general trend of increase, while soil pH and other nutrients reached maximum values and tree richness reached a minimum value at intermediate stages of succession. Seedling composition and diversity were significantly affected by soil water, pH, soil nutrient content, and biotic factors in the 18‐year‐old second growth forests; by soil pH, soil nutrient content, and biotic factors in the 30‐year‐old second growth forests; by CO, soil nutrient content and tree abundance in the 60‐year‐old second growth forests; and by CO, soil pH, and soil nutrient content in the old growth forests. At earlier stages of succession, the effect of the proportion of old growth forest in the surrounding landscape on seedling diversity was greater than that of land‐use history, but the importance of these drivers was reversed at later stages of succession.  相似文献   

20.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号