首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Inborn errors of metabolism are characterized by dysregulation of the metabolic networks that underlie development and homeostasis, and constitute an important and expanding group of genetic disorders in humans. Diagnostic methods that are based on molecular genetic tools have a limited ability to correlate phenotypes with subtle changes in metabolic fluxes. We argue that the direct and dynamic measurement of metabolite flux will facilitate the integration of environmental, genetic and biochemical factors with phenotypic information. Ultimately, this integration will lead to new diagnostic and therapeutic approaches that are focused on the manipulation of these pathways.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Inborn errors of pyruvate metabolism   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
Inborn errors of GABA metabolism   总被引:3,自引:0,他引:3  
Defects in man in four steps of 4-aminobutyric acid (GABA) metabolism may interefere with the function of this major inhibitory neurotransmitter. Glutamic acid decarboxylase, 4-aminobutyric acid aminotransferase, succinic semialdehyde dehydrogenase, and homocarnosinase are closely identified with the brain, but two of these enzymes are expressed in cultured peripheral cells, which may permit novel approaches to the study of the metabolism and regulation of GABA.  相似文献   

11.
12.
13.
14.
Inborn errors of purine and pyrimidine metabolism (P/P) manifest themselves by a variety of clinical picture. They may be recognized at any age and may affect any system--immunological, hematological, neurological, musculoskeletal, and because of the relative insolubility of purine bases, renal as well. At present, a total of 30 defects have been described. Fifteen of them can have serious clinical consequences. Analysis of prevalence estimated by comparing the number of detected P/P patients in Poland and the number of newborns as well as delay of diagnosis, point at insufficient degree of detectability of these defects in our country. It is necessary to improve the education among physicians as well as to popularize screening methods for these defects.  相似文献   

15.
16.
To date, more than 100 point mutations and several hundreds of structural rearrangements of mitochondrial DNA (mtDNA) are known too be connected with characteristic neuromuscular and other mitochondrial syndromes varying form those causing death at the neonatal stage to diseases with late ages of onset. The immediate cause of mitochondrial disorders is a defective oxidative phosphorylation. Wide phenotypic variation and the heteroplasmy phenomenon, which some authors include in mutation load, are characteristic of human mitochondrial diseases. As the numbers of cases identified and pedigrees described increase, data on the genotype--phenotype interaction and the structure and frequency of pathogenic and conditionally pathogenic mtDNA mutations in human populations are rapidly accumulated. The data on the genetics and epidemiology of mitochondrial diseases are not only important for differential diagnosis and genetic counseling. Since both neutral and mildly pathogenic mutations of mtDNA are progressively accumulated in maternal phyletic lines, molecular analysis of these mutations permits not only reconstruction of the genealogical tree of modern humans, but also estimation of the role that these mutations play in natural selection.  相似文献   

17.
M. Cantz  J. Gehler 《Human genetics》1976,32(3):233-255
Summary The mucopolysaccharidoses are genetic disorders of glycosaminoglycan metabolism. Patients with these diseases accumulate within the lysosomes of most tissues excessive amounts of dermatan and/or heparan sulfates, or of keratan sulfate. The clinical consequences of such glycosaminoglycan storage range from skeletal abnormalities to cardiovascular problems, and to motor and mental retardation.In all mucopolysaccharidoses, except Morquio disease, an excessive accumulation of sulfate-labeled glycosaminoglycans has been demonstrated in fibroblasts cultured from the patient's skin. It was subsequently shown that this was due to the deficiency of specific proteins which were named corrective factors, because their addition to the culture medium effected a normalization of the impaired glycosaminoglycan catabolism in the respective mucopolysaccharidosis fibroblasts. The investigation of the function of the corrective factors, and other studies, led to the identification of the enzymatic defect in each of the mucopolysaccharidoses.Seven lysosomal enzyme deficiencies are now recognized among this group of disorders. A classification of the diseases, according to the mutant gene products, reveals that there is considerable phenotypic variation not only between diseases, but also within several disease types. With the availability of the appropriate enzyme assays, the previous difficulties in diagnosing these disorders have now been overcome. Methods are also available for the prenatal diagnosis, and the detection of heterozygous individuals, in most of the mucopolysaccharidoses.Although correction of the metabolic defect through enzyme replacement has been achieved in tissue culture, many problems remain to be solved before such therapy may become applicable in the patients themselves.  相似文献   

18.
Barrientos A 《IUBMB life》2003,55(2):83-95
The yeast Saccharomyces cerevisiae is an excellent model for gaining insights into the molecular basis of human mitochondrial disorders, particularly those resulting from impaired mitochondrial metabolism. Yeast is a very well characterized system and most of our current knowledge about mitochondrial biogenesis in humans derives from yeast genetics and biochemistry. Systematic yeast genome-wide approaches have allowed for the identification of human disease genes. In addition, the functional characterization of a large number of yeast gene products resident in mitochondria has been instrumental for the later identification and characterization of their human orthologs. Here I will review the molecular and biochemical characterization of several mitochondrial diseases that have been ascribed to mutations in genes that were first found in yeast to be necessary for the assembly of the mitochondrial respiratory chain. The usefulness of yeast as a model system for human mitochondrial disorders is evaluated.  相似文献   

19.
Today there are described more than 400 point mutations and more than hundred of structural rearrangements of mitochondrial DNA associated with characteristic neuromuscular and other mitochondrial syndromes, from lethal in the neonatal period of life to the disease with late onset. The defects of oxidative phosphorylation are the main reasons of mitochondrial disease development. Phenotypic diversity and phenomenon of heteroplasmy are the hallmark of mitochondrial human diseases. It is necessary to assess the amount of mutant mtDNA accurately, since the level of heteroplasmy largely determines the phenotypic manifestation. In spite of tremendous progress in mitochondrial biology since the cause-and-effect relations between mtDNA mutation and the human diseases was established over 20 years ago, there is still no cure for mitochondrial diseases.  相似文献   

20.
Human mitochondrial diseases are associated with a wide range of clinical symptoms, and those that result from mutations in mitochondrial DNA affect at least 1 in 8500 individuals. The development of animal models that reproduce the variety of symptoms associated with this group of complex human disorders is a major focus of current research. Drosophila represents an attractive model, in large part because of its short life cycle, the availability of a number of powerful techniques to alter gene structure and regulation, and the presence of orthologs of many human disease genes. We describe here Drosophila models of mitochondrial DNA depletion, deafness, encephalopathy, Freidreich's ataxia, and diseases due to mitochondrial DNA mutations. We also describe several genetic approaches for gene manipulation in flies, including the recently developed method of targeted mutagenesis by recombinational knock-in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号