首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The activity of thymidylate synthase (TS) purified in our laboratory from Lactobacillus leichmannii was inhibited by pergularinine (PGL) and tylophorinidine (TPD) and deoxytubulosine (DTB) isolated from the Indian medicinal plants Pergularia pallida and Alangium lamarckii respectively. Cytotoxicity studies showed that cell growth of L. leichmannii was inhibited (IC50 = 40-45 microM) by all the three alkaloids, the concentrations > 80-90 microM resulting in complete loss of the enzyme activity. Ki values of the enzyme calculated from Lineweaver-Burk and Dixon plots for PGL, TPD and DTB were 10 x 10(-6) M, 9 x 10(-6) M and 7 x 10(-6) M respectively. These are typed as 'non-competitive' inhibitors of TS. All the three alkaloids inhibited (IC50 = 50 microM) the elevated TS activity of leukocytes in cancer patients with clinically diagnosed chronic myelocytic leukemia (n = 10), acute lymphocytic leukemia (n = 8) and metastatic solid tumours (n = 3).  相似文献   

2.
Employing thymidylate synthase (TS) (5, 10-CH2-H4PteGlu: dUMP C-methyltransferase, EC 2.1.1.45), a key target enzyme in chemotherapy, the biological activity of the β-carboline-benzoquinolizidine alkaloid deoxytubulosine (DTB) isolated from the Indian medicinal plant Alangium lamarckii has been evaluated and assessed for the first time. The TS employed in the present studies was purified from Lactobacillus leichmannii. The DTB was demonstrated to exhibit potent cytotoxicity and inhibited the cell growth of L. leichmannii, and DTB potently inhibited TS activity (IC50 = 40 μM). The DTB concentrations >80 μM resulted in a total loss of the TS activity, thus suggesting that the β-carboline-benzoquinolizidine alkaloid is a promising potential antitumor agent. The DTB binding to TS appears to be irreversible and tight through a possible covalent linkage. Although DTB strongly binds to DNA, it is not known whether DTB binds to RNA associated with TS. Inhibition kinetics showed that TS has a Ki value of 7 × 10−6 M for DTB and that the inhibition is a simple linear “noncompetitive” type. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 167–173, 1998  相似文献   

3.
Dihydrofolate reductase (DHFR; EC 1.5.1.3) was purified to homogeneity from soybean seedlings by affinity chromatography on methotrexate-aminohexyl Sepharose, gel filtration on Ultrogel AcA-54, and Blue Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave a single protein band corresponding to a molecular weight of 22,000. The enzyme is not a 140,000 Da heteropolymer as reported by others. Amino acid sequence-specific antibodies to intact human DHFR and also antibodies to CNBr-generated fragments of human DHFR bound to the plant enzyme on Western blots and cross-reacted significantly in immunoassays, indicating the presence of sequence homology between the two enzymes. The plant and human enzymes migrated similarly on nondenaturing polyacrylamide electrophoretic gels as monitored by activity staining with a tetrazolium dye. The specific activity of the plant enzyme was 15 units/mg protein, with a pH optimum of 7.4. Km values of the enzyme for dihydrofolate and NADPH were 17 and 30 microM, respectively. Unlike other eukaryotic enzymes, the plant enzyme showed no activation with organic mercurials and was inhibited by urea and KCl. The affinity of the enzyme for folate was relatively low (I50 = 130 microM) while methotrexate bound very tightly (KD less than 10(-10) M). Binding of pyrimethamine to the plant enzyme was weaker, while trimethoprim binding was stronger than to vertebrate DHFR. Trimetrexate, a very potent inhibitor of the human and bacterial enzymes showed weak binding to the plant enzyme. However, certain 2,4-diaminoquinazoline derivatives were very potent inhibitors of the plant DHFR. Thus, the plant DHFR, while showing similarity to the vertebrate and bacterial enzymes in terms of molecular weight and immunological cross-reactivity, can be distinguished from them by its kinetic properties and interaction with organic mercurials, urea, KCl and several antifolates.  相似文献   

4.
Dihydrofolate reductase (DHFR) (5,6,7,8-THF: NADDP+ oxidoreductase, EC 1.5.1.3) was purified 205-fold to apparent homogeneity from the crude extracts of Lactobacillus leichmannii. It has UV absorption maxima at 280 nm, M(r) of 20,000, Stokes radius of 0.34 nm and a S20.w value of 0.12 S. The preparation showed the presence of 168 amino acid residues with threonine and lysine as the NH2- and COOH- terminal end-groups respectively and a single reactive sulfhydryl group. pCMB inhibited the enzyme activity (IC50 = 2 microM). The enzyme has a pH optimum of 7.4 and is thermally inactivated at > 35 degrees C. It is activated by 0.1 M KCl and KI and 2 M urea. 3-4 M urea completely inactivated the enzyme. Enzyme has Km values of 3.5 microM and 6.2 microM for NADPH and DHF respectively, and a Ki value of 7 nM for MTX, the inhibition being competitive.  相似文献   

5.
We overexpressed and purified from Escherichia coli the dihydrofolate reductase (DHFR) of the gammaherpesviruses human herpesvirus 8 (HHV-8), herpesvirus saimiri (HVS), and rhesus rhadinovirus (RRV). All three enzymes proved catalytically active. The K(m) value of HHV-8 DHFR for dihydrofolate (DHF) was 2.02+/-0.44 microM, that of HVS DHFR was 4.31+/-0.56 microM, and that of RRV DHFR is 7.09+/-0.11 microM. These values are approximately 5-15-fold higher than the K(m) value reported for the human DHFR. The K(m) value of HHV-8 DHFR for NADPH was 1.31+/-0.23 microM, that of HVS DHFR was 3.78+/-0.61 microM, and that of RRV DHFR was 7.47+/-0.59 microM. These values are similar or slightly higher than the corresponding K(m) value of the human enzyme. Methotrexate, aminopterin, trimethoprim, pyrimethamine, and N(alpha)-(4-amino-4-deoxypteroyl)-N(delta)-hemiphthaloyl-L-ornithine (PT523), all well-known folate antagonists, inhibited the DHFR activity of the three gammaherpesviruses competitively with respect to DHF but proved markedly less inhibitory to the viral than towards the human enzyme.  相似文献   

6.
The Bacillus subtilis dihydrofolate reductase (DHFR) gene was expressed in Escherichia coli. The gene product was purified to homogeneity by Butyl-Toyopearl, Toyopearl HW55, and DEAE-Toyopearl column chromatographies, and its molecular properties were compared to those of E. coli DHFR. The specific enzyme activity of the B. subtilis DHFR was 240 units/mg under the standard assay conditions, being about four times higher than that of the E. coli DHFR. Km for coenzyme NADPH was 20.7 microM, a value about three times larger than that of E. coli, whereas Km (1.5 microM) for the substrate, dihydrofolate, was similar to that of E. coli DHFR. This seems to reflect the low homology of the amino acid sequence in residues 61-88 of the two DHFRs where one of the NADPH binding sites is located [Bystrof, C. & Kraut, J. (1991) Biochemistry 30, 2227-2239]. Similar to the E. coli DHFR [Iwakura, M. et al. (1992) J. Biochem. 111, 37-45], the extension of amino acid sequences at the C-terminal end of the B. subtilis DHFR could be attained without loss of the enzyme function or decrease of the protein yield. Thus, the DHFR is useful as a carrier protein for expressing small polypeptides, such as leucine enkephalin, bradykinin, and somatostatin.  相似文献   

7.
Dihydrofolate reductase (DHFR) from extracts of Mycobacterium smegmatis strain mc2(6) and trimethoprim-resistant mutant mc2(26) was purified to homogeneity. In crude extracts, the specific activity of the enzyme from the trimethoprim resistant strain was comparable to that from the sensitive strain. The DHFR from both sources was purified using affinity chromatography on MTX-Sepharose followed by Mono Q FPLC. The enzyme has an apparent molecular mass of 23 kDa from gel filtration on Sephadex G-100 and from SDS-PAGE. Amino terminal sequence analysis showed homology with DHFRs from a subset of other gram-positive organisms. The purified enzyme from the trimethoprim-sensitive organism exhibited Km values for H2folate and NADPH of 0.68 +/- 0.2 microM and 21 +/- 4 microM, respectively. The Km values for H2folate and NADPH for the enzyme from the drug-resistant organism were 1.8 +/- 0.4 microM and 5.3 +/- 1.5 microM, respectively. A kcat of 4.5 sec-1 was determined for the DHFR from both sources. The enzyme from both sources was competitively inhibited by pyrimethamine and trimethoprim. The Ki value of trimethoprim, for the enzyme from the drug-resistant organism was about six-fold higher than for the enzyme from drug-sensitive strain. Our data suggest that mutation of DHFR contributes to trimethoprim resistance in the mc2(26) strain of M. smegmatis.  相似文献   

8.
Pneumocystis carinii and Toxoplasma gondii are opportunistic pathogens of immunosuppressed patients that are susceptible to therapy with inhibitors of dihydrofolate reductase (DHFR). The DHFR of these two organisms was characterized to facilitate the identification of more selective inhibitors. Similar to all reported protozoa, T. gondii has a bifunctional enzyme, of 120,000 Da, that possesses both DHFR and thymidylate synthase (TS) activity. Unexpectedly, P. carinii DHFR activity was present on a small molecule, of 26,000 Da. T. gondii DHFR and TS activity coeluted during affinity chromatography using a methotrexate-Sepharose column, whereas P. carinii DHFR and TS activity could be separated by affinity chromatography using the same column. P. carinii DHFR could be easily distinguished from rat DHFR, which is similar in size, by the differences in Km for dihydrofolate (P. carinii, 17.6 +/- 3.9 microM; rat, 4.0 +/- 2.2 microM). Since all protozoa reported have a large molecular weight, bifunctional DHFR, these studies support the classification of P. carinii as a fungus. These studies also provide a basis for the development of more effective therapeutic agents for these pathogens.  相似文献   

9.
We have examined the pattern of dihydrofolate reductase (DHFR) enzyme and mRNA levels in cell cycle stage-specific populations obtained by centrifugal elutriation in Chinese hamster ovary cells and in a derivative line in which the dihydrofolate reductase gene is amplified approximately 50-fold. On a per cell basis, we observed a 2-fold increase in DHFR activity as cells progressed from G1 to G2/M with a concomitant 2-fold increase in the rate of protein synthesis and steady state level of mRNA. Analysis of DHFR mRNA levels in cell cycle stage-specific mouse 3T6 and human 143 tk- cells gave a similar pattern. We also demonstrate that simple alterations in growth conditions prior to elutriations can dramatically increase the levels of DHFR mRNA in all cell cycle states, thereby indicating that growth response associated with the DHFR gene functions independent of the cell cycle. We conclude that during periods of exponential growth the increases in dihydrofolate reductase activity, rate of protein synthesis, and steady state levels of mRNA parallel the general increases in cell volume and protein content associated with normal progression through the cell cycle, and therefore DHFR cannot be considered a cell cycle-regulated enzyme.  相似文献   

10.
Dihydrofolate reductase (DHFR) and thymidylate synthase (TS) activities are associated with a 285,000 molecular weight enzyme complex in carrot (Daucus carota L.). Selection for methotrexate (MTX) resistance by stepwise increase of the concentration of MTX results in a high frequency adaptation to MTX with little or no significant increase in DHFR activity. However, when as a second step following MTX selection a specific inhibitor of TS, 5-fluoro-2-deoxyuridine was used, DHFR overproducer lines were obtained. The overproduction phenotype of the lines was almost completely lost after 8 weeks of growth in the absence of selection pressure. Although DHFR and TS are independent gene products, their activities increase in proportion (~20-fold) in the overproducer lines. This strongly suggests that DHFR and TS are not only functionally and physically linked in the same enzyme complex, but also are coregulated. These cell lines resemble the MTX-induced DHFR overproducer amplified cell lines of mammalian origin in their mode of selection, high frequency of appearance, elevated enzyme activity, and increased specific mRNA levels.  相似文献   

11.
Uncaria tomentosa inner bark extract is a popular plant remedy used in folk medicine to treat tumor and inflammatory processes. In this study, the anti-tumoral effects of its pentacyclic alkaloid mitraphylline were investigated. Furthermore, its growth-inhibitory and cytotoxic effects on glioma GAMG and neuroblastoma SKN-BE(2) cell lines were studied using cyclophosphamide and vincristine as controls. A colter counter was used to determine viable cell numbers, followed by application of the tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)2-(4-sulfophenyl)-2H-tetrazolium], inner salt, colorimetric method to evaluate cell viability in this cytotoxicity assay. Micromolar concentrations of mitraphylline (from 5 to 40 microM) inhibited the growth of both cell lines. It inhibited the growth of the two cell lines studied in a dose-dependent manner. The IC(50) values were 12.3 microM (30h) for SKN-BE(2) and 20 microM (48 h) for GAMG, respectively. This action suggests that mitraphylline is a new and promising agent in the treatment of human neuroblastoma and glioma.  相似文献   

12.
From a population of wild type S49 cells, a clone, DTB6, was isolated in a single step from selective medium containing thymidine and dibutyryl cyclic AMP that exhibited a 60% deficiency in AMP deaminase (AMP-D) activity. The AMP-D deficiency conferred to the DTB6 cells a striking susceptibility to killing by low concentrations of either adenine or adenosine, the latter in the presence of an inhibitor of adenosine deaminase activity. This growth supersensitivity of DTB6 cells toward adenine could be ameliorated by the addition of hypoxanthine to the culture medium. Immunoprecipitation of AMP-D from wild type and mutant cells revealed that the DTB6 cell line contained markedly diminished amounts of the AMP-D isozyme which reacts with antisera to the predominant isoform expressed in adult kidney. The quantities of the AMP-D isozyme immunoprecipitated by antisera raised to the predominant isoform prepared from adult heart were equivalent in the two cell lines. Although Northern blot analyses revealed no alterations in mRNA sizes or levels encoded by either of the AMP-D genes, Southern blots of genomic DNA hybridized to a cDNA specific for the ampd2 gene revealed the presence of a new BamHI restriction fragment in the DNA of DTB6 cells. These data suggested that a point mutation has occurred in the ampd2 gene of DTB6 cells which encodes the AMP-D isozyme recognized by the kidney antisera. The DTB6 cells also possessed a virtual complete deficiency in thymidine kinase activity. The two enzyme deficiencies were distinguishable. The ability to isolate single step mutants with two seemingly independent biochemical abnormalities raises the speculation that there may be some link between cellular functions responsible for purine nucleotide and thymidine metabolism.  相似文献   

13.
14.
Summary Terminally differentiating mouse muscle cells were used to examine the relationship between mytogenic withdrawal from the cell cycle and the levels of dihydrofolate reductase (DHFR) mRNA and DHFR activity. Differentiation was induced by removal of fibroblast growth factor activity from the medium. DHFR mRNA was measured by a RNase protection assay. DHFR activity was measured by a spectrophotometric assay and by a [3H]methotrexate binding assay. Proliferative myoblasts contained four DHFR mRNA molecules and 1.8×105 DHFR enzyme molecules. By 12.5 h after induction, when [3H]thymidine labeling indices showed all cells had withdrawn from the cell cycle, DHFR mRNA levels had declined to 0.7 copies per cell. In contrast, myogenic withdrawal did not result in reduced DHFR activity. Qualitatively similar results, i.e. down-regulation of mRNA and constitutive expression of activity, were observed in a methotrexate-selected muscle cell line with >50-fold amplification of the DHFR gene. Enzyme synthesis rate and stability measurements indicated that persistence of DHFR activity in postreplicative cells was due to a long enzyme lifetime rather than to continued synthesis from residual normal DHFR mRNA or an alternative mRNA species not detected by the RNase protection assay. Unlike DHFR, thymidine kinase (TK) activity disappeared rapidly as muscle cells differentiated. Both DHFR mRNA and TK mRNA are expressed in a replication-dependent manner; however, the enzymes encoded by these messages are subject to different fates in postreplicative cells. This work was supported by National Institutes of Health (Bethesda, MD) research grant GM34432, NIH Research Career Development Award AG00334, and a grant from the Medical Research Foundation of Oregon to G. F. M. E. E. S. was supported in part by Predoctoral Training Grant GM07774-08 from the Department of Health and Human Services, Washington, DC. and a N. L. Tartar Research Fellowship.  相似文献   

15.
Synthesis and biological evaluation of a fluorescent analogue of folic acid   总被引:4,自引:0,他引:4  
A fluorescein derivative of the lysine analogue of folic acid, N alpha-pteroyl-N epilson-(4'-fluoresceinthiocarbamoyl)-L-lysine (PLF), was synthesized as a probe for dihydrofolate reductase (DHFR) and a membrane folate binding protein (m-FBP). Excitation of PLF at 282 nm and at 497 nm gave a fluorescence emission maximum at 518 nm. Binding of PLF to human DHFR or human placental m-FBP results in approximately a 20-fold enhancement in the magnitude of the fluorescence emission, suggesting that the ligand interacts with a hydrophobic region on these proteins. Additional evidence suggests that an energy transfer may occur between the pteridine and the fluorescein moieties. PLF binds to the active site of human DHFR since methotrexate (MTX) competes stoichiometrically and the denatured enzyme in the presence of PLF did not exhibit fluorescent enhancement. The dissociation constant for the fluorescein derivative with respect to human DHFR is 115 nM as compared to 111 nM for folic acid. The Ki value for the competitive inhibition of human DHFR by the fluorescent analogue of folic acid is 2.0 microM compared to 0.48 microM for folic acid. PLF was reduced to N alpha-(7,8-dihydropteroyl)-N epilson-(4'-fluoresceinthiocarbamoyl)-L-lysine (H2PLF) and assayed by the enzymatic conversion to the tetrahydro derivative. The Km value for human DHFR for the dihydrofolate analogue is 2.0 microM. The KD value for H2PLF to human DHFR is 47 nM as compared to 44 nM for dihydrofolate. The KD values for both H2PLF and PLF indicate that the fluorescein moiety does not significantly affect folate binding in enzyme binary complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have used a methotrexate (MTX)-resistant mouse 3T6 cell line (M50L3), that overproduces dihydrofolate reductase (DHFR) and its mRNA by a factor of 300, to study the mechanism for turning off DHFR gene expression following withdrawal of serum factors or elevation of the intracellular level of cAMP. When resting (G0) M50L3 cells are serum-stimulated to reenter the cell cycle, the level of DHFR activity begins to increase at about the same time the cells begin synthesizing DNA. The increase in enzyme activity is preceded by increases in the synthesis rate of the enzyme, and the content and production rate of DHFR mRNA. These increases, as well as entry into S phase, are blocked when the cells are serum-stimulated in the presence of dibutyryl cyclic AMP (db-cAMP) and theophylline. In this study, we found that when these drugs were added, or the serum stimulus was withdrawn during S phase (20 h following stimulation), the subsequent increase in DHFR level was blocked. Immunoprecipitation of DHFR from pulse-labelled cells showed that both treatments led to a rapid decrease in synthesis rate of the enzyme. The effect on total protein synthesis was much less than on DHFR synthesis. In DNA-excess filter hybridization experiments, we found that the content of cytoplasmic DHFR mRNA decreased in parallel with the synthesis rate of the enzyme. This was due in part to a decrease in the production rate of DHFR mRNA relative to total mRNA. In addition, drug addition or serum withdrawal led to a significant destabilization of DHFR (as well as total) mRNA. About 85% of poly(A)(+) DHFR mRNA was associated with polysomes in resting, growing, or cAMP-treated cells, suggesting that DHFR gene expression was not controlled at the translational level under these conditions.  相似文献   

17.
R E Corin  T Turner  P Szabo 《Biochemistry》1986,25(13):3768-3773
A series of murine erythroleukemia cell (MELC) variants was generated by selection for the ability to grow in increasing concentrations of the folate antagonist methotrexate (MTX). Growth of the parental MELC strain DS-19 was completely inhibited by 0.1 microM MTX. We isolated cells able to grow in 5, 40, 200, 400, and 800 microM MTX. Growth rates and yields were essentially the same in the presence or absence of the selective dose of MTX for all variants. MTX resistance was not the result of a transport defect. Dihydrofolate reductase (DHFR) from our variants and DS-19 was inhibited to the same extent by MTX. Variants had increased dihydrofolate reductase activities. The specific activity of DHFR was proportional to the selective concentration of MTX employed to isolate a given variant. DNA dot blotting established that the cloned variant (MR400-3) had a 160-fold increase in DHFR gene copy number relative to the parental strain (DS-19). Hybridization studies performed in situ established the presence of amplified DHFR genes on the chromosomes of the MTX-resistant but not the MTX-sensitive (parental) cells. Quantitation of DHFR mRNA by cytoplasmic dot blotting established that the amplified DHFR gene expression was proportional to gene copy number. Thus, MTX resistance was due to amplification of the DHFR gene. The variants retained the ability to be induced to differentiate in response to dimethyl sulfoxide and hexamethylenebis(acetamide) as evaluated by the criteria of globin mRNA accumulation, hemoglobin accumulation, cell volume decreases, and terminal cell division.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mass spectrometry technologies for measurement of cellular metabolism are opening new avenues to explore drug activity. Trimethoprim is an antibiotic that inhibits bacterial dihydrofolate reductase (DHFR). Kinetic flux profiling with (15)N-labeled ammonia in Escherichia coli reveals that trimethoprim leads to blockade not only of DHFR but also of another critical enzyme of folate metabolism: folylpoly-gamma-glutamate synthetase (FP-gamma-GS). Inhibition of FP-gamma-GS is not directly due to trimethoprim. Instead, it arises from accumulation of DHFR's substrate dihydrofolate, which we show is a potent FP-gamma-GS inhibitor. Thus, owing to the inherent connectivity of the metabolic network, falling DHFR activity leads to falling FP-gamma-GS activity in a domino-like cascade. This cascade results in complex folate dynamics, and its incorporation in a computational model of folate metabolism recapitulates the dynamics observed experimentally. These results highlight the potential for quantitative analysis of cellular metabolism to reveal mechanisms of drug action.  相似文献   

19.
(+)-S-bgugaine [1], is an alkaloid prepared by enantioselective synthesis. This alkaloid is an isomer of R-bgugaine [2], an alkaloid isolated from Arisarum vulgare, an Araceae toxic plant of Morocco. The cytotoxic effect and the electrophysiological activity of (+)-S-bgugaine [1] against MRC-5 fibroblasts of (+)-S-bgugaine 1, were studied. (+)-S-bgugaine [1] showed a cytotoxic potential at 40 microg/ml against these MRC-5 cells. The electrophysiological study on MRC-5 cells was carried out using the technique of patch-clamp and showed that the activity of compound 1 involved a reduction of outward potassic current at the concentration of 100 microM (28.1 microg/ml) and was accentuated by 200 microM (56.2 microg/ml). In this study we show that S-bgugaine [1], decreases the outward potassic current.  相似文献   

20.
Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号