首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isopenicillin N synthase from Cephalosporium acremonium (IPNS; M(r) 38.4K) is an Fe(2+)-requiring enzyme which catalyzes the oxidative conversion of (L-alpha-amino-delta-adipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N, with concomitant reduction of O2 to 2H2O. Chemical and spectroscopic data have suggested that catalysis proceeds via an enzyme complex of ACV bound to the iron through its cysteinyl thiolate [Baldwin, J. E., & Abraham, E. P. (1988) Nat. Prod. Rep. 5, 129-145; Chen, V. J., Orville, A. M., Harpel, M. R., Frolik, C. A., Surerus, K. K., Münck, E., & Lipscomb, J. D. (1989) J. Biol. Chem. 264, 21677-21681; Ming, L.-J., Que, L., Jr., Kriauciunas, A., Frolik, C. A., & Chen, V. J. (1991) Biochemistry 30, 11653-11659]. Here we have employed the technique of Fe K-edge extended X-ray absorption fine structure (EXAFS) to characterize the iron site and to seek direct evidence for or against the formation of an Fe-S interaction upon ACV binding. Our data collected in the absence of substrate and O2 are consistent with the iron center of IPNS being coordinated by only (N,O)-containing ligands in an approximately octahedral arrangement and with an average Fe-(N,O) distance of 2.15 +/- 0.02 A. Upon anaerobic binding of ACV, the iron coordination environment changes considerably, and the associated Fe EXAFS cannot be adequately simulated without incorporating an Fe-S interaction at 2.34 +/- 0.02 A along with four or five Fe-(N,O) interactions at 2.15 +/- 0.02 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
L J Ming  L Que  A Kriauciunas  C A Frolik  V J Chen 《Biochemistry》1991,30(50):11653-11659
The active site structure of isopenicillin N synthase (IPNS) has been previously studied by the use of M?ssbauer, EPR, electronic absorption, and NMR spectroscopies [Chen, V.J., Frolik, C.A., Orville, A.M., Harpel, M.R., Lipscomb, J.D., Surerus, K.K., & Münck, E. (1989) J. Biol. Chem. 264, 21677-21681; Ming, L.-J., Que, L., Jr., Kriauciunas, A., Frolik, C.A., & Chen, V.J. (1990) Inorg. Chem. 26, 1111-1112]. These studies have revealed three coordinated His residues along with three sites for substrate [delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine, ACV], NO, and water binding on the active Fe(II) of IPNS. We report here NMR studies of Fe(II)IPNS and its Co(II)-substituted derivative [Co(II)IPNS]. By the use of NOE techniques on the Co(II)IPNS-ACV complex, we have recognized a -CH2-CH less than spin system at 14.6, 24.3, and 38.6 ppm that is assigned to the alpha and beta protons of a coordinated Asp residue. Corresponding solvent nonexchangeable features are found near 40 ppm in Fe(II)IPNS and the Fe(II)IPNS-ACV complex, but the peaks are too broad for NOE effects to be observed. The binding of NO to the Fe(II) center results in a significant change in the configuration of the metal site: (a) The C beta H2 resonances due to the coordinated Asp residue disappear. The loss of the signal may indicate a change of the carboxylate configuration from syn-like to anti-like or, less likely, its displacement by NO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Isopenicillin N synthase (IPNS), a non-heme iron(II)-dependent oxidase, catalyzes conversion of the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to bicyclic isopenicillin N (IPN), concomitant with the reduction of dioxygen to two molecules of water. Incubation of the "truncated"substrate analogues delta-(l-alpha-aminoadipoyl)-l-cysteinyl-glycine (ACG) and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-alanine (ACA) with IPNS has previously been shown to afford acyclic products, in which the substrate cysteinyl residue has undergone a two-electron oxidation. We report X-ray crystal structures for the anaerobic IPNS/Fe(II)/ACG and IPNS/Fe(II)/ACA complexes, both in the absence and presence of the dioxygen analogue nitric oxide. The overall protein structures are very similar to those of the corresponding IPNS/Fe(II)/ACV complexes; however, significant differences are apparent in the vicinity of the active site iron. The structure of the IPNS/Fe(II)/ACG complex reveals that the C-terminal carboxylate of this substrate is oriented toward the active site iron atom, apparently hydrogen-bonded to an additional water ligand at the metal; this is a different binding mode to that observed in the IPNS/Fe(II)/ACV complex. ACA binds to the metal in a manner that is intermediate between those observed for ACV and ACG. The addition of NO to these complexes initiates conformational changes such that both the IPNS/Fe(II)/ACG/NO and IPNS/Fe(II)/ACA/NO structures closely resemble the IPNS/Fe(II)/ACV/NO complex. These results further demonstrate the feasibility of metal-centered rearrangements in catalysis by non-heme iron enzymes and provide insight into the delicate balance between hydrophilic-hydrophobic interactions and steric effects in the IPNS active site.  相似文献   

4.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40? resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57?. The sulfur of the cysteinyl thiolate sits 2.36? from the metal.  相似文献   

5.
The nonheme iron oxidase isopenicillin N synthase catalyzes the formation of two new internal bonds in the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to form the beta-lactam and thiazolidine rings of isopenicillin N. Concomitantly, O2 is reduced to 2 H2O. The recombinant enzyme from Cephalosporium acremonium (Mr = 38,400), expressed as an apoenzyme in Escherichia coli, binds 1 g atom of Fe2+/mol of enzyme to reconstitute full activity. M?ssbauer spectra of the 57Fe-enriched enzyme exhibit parameters (delta = 1.30 mm/s, delta EQ = 2.70 mm/s) which unambiguously show that the active site iron is high spin Fe2+. Anaerobic binding of ACV causes a substantial decrease in the isomer shift parameter delta (delta = 1.10 mm/s, delta EQ = 3.40 mm/s) showing that the substrate perturbs the iron site and makes its coordination environment much more covalent. Nitric oxide (NO) binds to the EPR silent active site iron to give an EPR active species (g = 4.09, 3.95, 2.0; S = 3/2) similar to those of the nitrosyl complexes of many other mononuclear Fe2+-containing enzymes. The rhombicity of the EPR spectrum is increased (g = 4.22, 3.81, 1.99) by anaerobic addition of ACV suggesting that the substrate binds to or near the iron without displacing NO. Interestingly, the enzyme.ACV.NO complex displays an optical spectrum similar to that of ferric rubredoxin in which the iron has only thiol coordination. This suggests that the Fe2+ of the enzyme.ACV.NO complex acquires Fe3+ character and that the cysteinyl thiol moiety of ACV coordinates to the iron. Similar substrate thiol coordination to the iron of the enzyme.ACV complex is the most probable explanation for the large decrease in isomer shift observed. These results provide the first evidence for the direct involvement of iron in this unique O2-dependent reaction and suggest novel roles for iron and oxygen in biological catalysis.  相似文献   

6.
Isopenicillin N synthase (IPNS) catalyses cyclization of δ-(l-α-aminoadipoyl)-l-cysteinyl-d-valine (ACV) to isopenicillin N (IPN), the central step in penicillin biosynthesis. Previous studies have shown that IPNS turns over a wide range of substrate analogues in which the valine residue of its natural substrate is replaced with other amino acids. IPNS accepts and oxidizes numerous substrates that bear hydrocarbon sidechains in this position, however the enzyme is less tolerant of analogues presenting polar functionality in place of the valinyl isopropyl group. We report a new ACV analogue δ-(l-α-aminoadipoyl)-l-cysteinyl-d-methionine (ACM), which incorporates a thioether in place of the valinyl sidechain. ACM has been synthesized using solution phase methods and crystallized with IPNS. A crystal structure has been elucidated for the IPNS:Fe(II):ACM complex at 1.40 Å resolution. This structure reveals that ACM binds in the IPNS active site such that the sulfur atom of the methionine thioether binds to iron in the oxygen binding site at a distance of 2.57 Å. The sulfur of the cysteinyl thiolate sits 2.36 Å from the metal.  相似文献   

7.
Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni has been purified to homogeneity and crystallized. The iron containing, extradiol dioxygenase is shown to be composed of two subunit types (alpha, Mr = 17,700 and beta, Mr = 33,800) in a 1:1 ratio; such a composition has not been observed for other extradiol dioxygenases. The 4.2 K M?ssbauer spectrum of native protocatechuate 4,5-dioxygenase prepared from cells grown in 57Fe-enriched media consists of a doublet with quadrupole splitting, delta EQ = 2.22 mm/s, and isomer shift delta Fe = 1.28 mm/s, demonstrating a high spin Fe2+ site. These parameters, and the temperature dependence of delta EQ, are unique among enzymes but are strikingly similar to those reported for the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26, suggesting very similar ligand environments. The Fe2+ of protocatechuate 4,5-dioxygenase can be oxidized, for instance by H2O2, to yield high spin Fe3+ with EPR g values around g = 6 (and g = 4.3). In the oxidized state, protocatechuate 4,5-dioxygenase is inactive; the iron, however, can be rereduced by ascorbate to yield active enzyme. Our data suggest that protocatechuate binds to Fe2+; the spectra indicate that the ligand binding is heterogenous. The M?ssbauer spectra observed here are fundamentally different from those reported earlier (Zabinski, R., Münck, E., Champion, P., and Wood, J. M. (1972) Biochemistry 11, 3212-3219). The spectra of the earlier (reconstituted) preparations, which had substantially lower specific activities, probably reflect adventitiously bound Fe3+. We discuss here how adventitiously bound iron can be identified and removed. The Fe2+ which is present in native protocatechuate 4,5-dioxygenase and its complexes with substrates and inhibitors reacts quantitatively with nitric oxide to produce a species with electronic spin S = 3/2. The EPR and M?ssbauer spectra of these complexes compare favorably with EDTA . Fe(II) . NO. We have studied the latter complex extensively and have analyzed the M?ssbauer spectra with an S = 3/2 spin Hamiltonian. EPR spectra show that protocatechuate 4,5-dioxygenase-NO complexes with substrates or inhibitors are heterogeneous and consist of several well defined subspecies. The data show that NO, and presumably also O2, has access to the active site Fe2+ in the enzyme-substrate complex. The use of EPR-detectable NO complexes as a rapid and sensitive tool for the study of the EPR silent active site iron of extradiol dioxygenases is discussed.  相似文献   

8.
Nitric-oxide synthase (NOS) catalyzes the formation of NO and citrulline from l-arginine and oxygen. However, the NO so formed has been found to auto-inhibit the enzymatic activity significantly. We hypothesized that the NO reactivity is in part controlled by hydrogen bonding between the conserved tryptophan residue (position 409 in the neuronal isoform of NOS (nNOS)) and the cysteine residue that forms the proximal bond to the heme. By using resonance Raman spectroscopy and NO as a probe of the heme environment, we show that in the W409F and W409Y mutants of the oxygenase domain of the neuronal enzyme (nNOSox), the Fe-NO bond in the Fe3+NO complex is weaker than in the wild type enzyme, consistent with the loss of a hydrogen bond on the sulfur atom of the proximal cysteine residue. The weaker Fe-NO bond in the W409F and W409Y mutants might result in a faster rate of NO dissociation from the ferric heme in the Trp-409 mutants as compared with the wild type enzyme, which could contribute to the lower accumulation of the inhibitory NO-bound complexes observed during catalysis with the Trp-409 mutants (Adak, S., Crooks, C., Wang, Q., Crane, B. R., Tainer, J. A., Getzoff, E. D., and Stuehr, D. J. (1999) J. Biol. Chem. 274, 26907-26911). The optical and resonance Raman spectra of the Fe2+NO complexes of the Trp-409 mutants differ from those of the wild type enzyme and indicate that a significant population of a five-coordinate Fe2+NO complex is present. These data show that the hydrogen bond provided by the Trp-409 residue is necessary to maintain the thiolate coordination when NO binds to the ferrous heme. Taken together our results indicate that the heme environment on the proximal side of nNOS is critical for the formation of a stable iron-cysteine bond and for the control of the electronic properties of heme-NO complexes.  相似文献   

9.
Oxoferrylporphyrin cation radical complexes were generated by m-chloroperoxybenzoic acid oxidation of the chloro and trifluoromethanesulfonato complexes of tetramesitylporphyrinatoiron(III) [(TMP)Fe] and the trifluoromethanesulfonato complex of tetra(2,6-dichlorophenyl)porphyrinatoiron(III) [TPP(2,6-Cl)Fe]. Coupling between ferryl iron (S = 1) and porphyrin radical (S' = 1/2) spin systems was investigated by M?ssbauer and EPR spectroscopy. The oxoferrylporphyrin cation radical systems generated from the TMP complexes show strong ferromagnetic coupling. Analysis of the magnetic M?ssbauer spectra, using a spin Hamiltonian explicitly including a coupling tensor J, suggests an exchange-coupling constant J greater than 80 cm-1. The EPR spectra show non-zero rhombicity, the origin of which is discussed in terms of contributions from the usual zero-field effects of iron and from iron-radical spin-dipolar interaction. A consistent estimate of zero-field splitting parameter D approximately + 6 cm-1 was obtained by EPR and M?ssbauer measurements. EPR and M?ssbauer parameters are shown to be slightly dependent on solvent, but not on the axial ligand in the starting (TMP)Fe complex. In contrast to the TMP complex, the oxoferrylporphyrin cation radical system generated from [TPP(2,6-Cl)FeOSO2CF3] exhibits M?ssbauer and EPR spectra consistent with weak iron-porphyrin radical coupling of magnitude of J approximately 1 cm-1.  相似文献   

10.
The anticancer drug adriamycin binds iron and these complexes cycle to reduce molecular oxygen (Zweier, J. L. (1984) J. Biol. Chem. 259, 6056-6058). Optical absorption, EPR, and M?ssbauer spectroscopic data are correlated with polarographic O2 consumption and chemical Fe2+ extraction measurements in order to characterize each step in this cycle. Fe3+ binds to adriamycin at physiologic pH forming a complex with an optical absorbance maximum at 600 nm. EPR signals at g = 4.2 and g = 2.01, and a doublet M?ssbauer spectrum with isomer shift delta = 0.57 mm/s and quadrupole splitting delta EQ = 0.74 mm/s are observed indicating that the Fe3+ bound to adriamycin is high spin S = 5/2. Under anaerobic conditions the absorbance maximum at 600 nm decreases with an exponential decay constant = 0.77 h-1, and the EPR and M?ssbauer spectra of Fe3+-adriamycin similarly decrease as the Fe3+ is reduced to EPR silent Fe2+. The Fe2+-adriamycin complex which is formed exhibits a M?ssbauer spectrum with delta = 1.18 mm/s and delta EQ = 1.82 mm/s indicative of high spin Fe2+. As the EPR spectra of Fe3+-adriamycin decrease on reduction of the Fe3+ to Fe2+ a signal of the oxidized adriamycin free radical appears at g = 2.004 with line width of 8 G. On exposure to O2 the absorption maximum at 600 nm, the Fe3+ EPR, and the Fe3+ M?ssbauer spectra all return. Polarographic measurements demonstrate that O2 is consumed and that H2O2 is formed. Addition of high affinity Fe2+ chelators block O2 consumption indicating that Fe2+ formation is essential for O2 reduction. This cycle of iron-mediated O2 reduction can explain the formation of the reactive reduced oxygen and adriamycin radicals which are thought to mediate the biological activity of adriamycin.  相似文献   

11.
The binding reactions of two heterocyclic analogs of protocatechuate (PCA), 2-hydroxyisonicotinic acid N-oxide and 6-hydroxynicotinic acid N-oxide, to Brevibacterium fuscum protocatechuate 3,4-dioxygenase have been characterized. These analogs were synthesized as models for the ketonized tautomer of PCA which we have previously proposed as the form which reacts with O2 in the enzyme complex (Que, L., Jr., Lipscomb, J.D., Munck, E., and Wood, J.M. (1977) Biochim. Biophys. Acta 485, 60-74). Both analogs have much higher affinity for the enzyme than PCA. Repetitive scan optical spectra of each binding reaction show that at least one intermediate is formed. The spectra of the intermediates are red-shifted (lambda max = 500 nm) relative to that of native enzyme (lambda max = 435 nm) but are similar to that of the anaerobic enzyme-PCA complex. In contrast, the spectrum of the final, deadend complex formed by each analog is significantly blue-shifted (lambda max less than 340 nm) resulting in an apparent bleaching of the chromophore of the enzyme. A transient intermediate exhibiting a similar bleached spectrum has been detected in the enzyme reaction cycle immediately after O2 is added to the enzyme-PCA complex (Bull C., Ballou D.P., and Otsuka, S. (1981) J. Biol. Chem. 256, 12681-12686). Stopped flow measurements of the analog binding reactions show that a relatively weak enzyme complex is initially formed followed by at least two isomerizations leading to the bleached, high affinity complexes. EPR spectra of both the early and final complexes reveal only high spin Fe3+ with negative zero field splitting, showing that the optical bleaching is not due to Fe reduction. The studies show that the ketonized analogs are poor models for the enzyme-substrate complex but do successfully mimic many features of the first oxy complex of the reaction cycle. We propose that substrate ketonization occurs coincident with or after O2 binding and may be involved directly in the O2 insertion reaction.  相似文献   

12.
Pseudomonas testosteroni protocatechuate 4,5-dioxygenase and Pseudomonas putida catechol 2,3-dioxygenase (metapyrocatechase) catalyze extradiol-type oxygenolytic cleavage of the aromatic ring of their substrates. The essential active site Fe2+ of each enzyme binds nitric oxide (NO) to produce an EPR active complex with an electronic spin of S = 3/2. Hyperfine broadening of the EPR resonances of the nitrosyl complexes by 17O-enriched H2O shows that water is bound directly to the Fe2+ in the native enzymes, but is apparently displaced in substrate complexes. NO is not displaced by either substrates or inhibitors. The EPR spectra of several enzyme-inhibitor-NO complexes are different from those of enzyme-NO or enzyme-substrate-NO complexes and are found to be broadened by 17O-enriched water. The data show that at least 2 and perhaps 3 sites in the Fe ligation can be occupied by exogenous ligands. Furthermore, it is likely that substrates and inhibitors displace water by binding either at or near to the Fe in the nitrosyl complex. Nitric oxide binding is found to be substrate-dependent for each enzyme. Native catechol 2,3-dioxygenase exhibits KD values of 190 microM and 2.0 mM for NO binding in two types of independent sites. Only one type of site is observed in the catechol complex which exhibits a KD for NO of 3.4 microM. One type of NO binding site is observed for both the native and substrate complexed protocatechuate 4,5-dioxygenase with KD values of 360 and 3 microM, respectively. The presence of a specific site in the Fe coordination for NO which is modified in the substrate complex, suggests that O2 binding by the extradiol dioxygenases may also occur at the Fe.  相似文献   

13.
Previous spectroscopic studies of chloroperoxidase have provided evidence for endogenous thiolate sulfur donor ligation to the central heme iron of the enzyme. This conclusion is further supported by recent DNA sequence data which revealed the existence of a third cysteine residue (in addition to a disulfide pair detected earlier) in the protein available for coordination to the heme iron. Thus, chloroperoxidase shares many spectroscopic properties with cytochrome P-450, the only other known thiolate-ligated heme protein. Surprisingly, a previous electron paramagnetic resonance (EPR) study of low-spin ferric chloroperoxidase-ligand complexes (Hollenberg, P.F., Hager, L.P., Blumberg, W.E. and Peisach, J. (1980) J. Biol. Chem. 255, 4801-4807) was unable to provide clear support for the presence of a thiolate ligand, although sulfur coordination was implicated. This was, in part, because an insufficient number of complexes was examined. In this work, we have significantly expanded upon the previous EPR study by using an extensive variety of over twenty exogenous ligands including carbon, nitrogen, oxygen, phosphorus and sulfur donors. Crystal field analysis, using the procedure of Blumberg and Peisach, of the present data in comparison with data for analogous complexes of cytochrome P-450-CAM, thiolate-ligated heme model systems, and myoglobin, is clearly indicative of endogenous thiolate ligation for chloroperoxidase. In addition, the UV-visible absorption and EPR spectral data suggest that a carboxylate ligand is a possible candidate for the endogenous sixth ligand to the heme iron that is responsible for the reversible conversion of ferric chloroperoxidase from high-spin to low-spin at low temperatures (less than 200 K).  相似文献   

14.
Isopenicillin N synthase (IPNS) from Cephalosporium acremonium contains 2 cysteine residues in positions 106 and 255 which are invariant in all IPNS sequences reported to date (Miller, J.R., and Ingolia, T.D. (1989) Mol. Microbiol. 3, 689-695). Although these residues have been postulated to play a role in catalysis (Samson, S.M., Chapman, J.L., Belagaje, R., Queener, S., and Ingolia, T.D. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5705-5709) as well as enzyme inactivation (Perry, D., Abraham, E.P., and Baldwin, J.E. (1988) Biochem. J. 255, 345-351) little information exists regarding their oxidation state and reactivity. In this paper, the functions of these cysteines have been addressed by chemical modification techniques in combination with site-directed mutagenesis. In the intact wild type protein, both cysteines are inert toward 5,5'-dithiobis-(2-nitrobenzoic acid) and iodoacetic acid. However, Cys-106, but not Cys-255, can be slowly modified by N-ethylmaleimide, and its modification is partially blocked by the presence of a substrate analog inhibitor. Complete modification of both cysteines by sulfhydryl reagents requires unfolding of the protein but not the presence of a disulfide reducing agent. The thiol content of IPNS is shown to be the same before and after exposing the enzyme to substrate even though during catalysis the enzyme is rapidly inactivated. The impact on catalysis due to alteration of the cysteines has been assessed using three site-specific mutants: Cys-106----Ser, Cys-255----Ser, and Cys-106,255----Ser. These mutant proteins have been purified as apoenzymes with the nature of the mutation verified by peptide mapping. The stoichiometry of metal required for activity remains as one equivalent of Fe2+/mol of enzyme in the mutants as in wild type IPNS. Compared with wild type, Cys-255----Ser shows a reduction in Vmax by 33%, and an increase in Km by 1.4-fold, while Cys-106----Ser and Cys-106,255----Ser, which have identical kinetic properties, exhibit a decrease in Vmax by 63% but an elevation of Km by 14-fold. The data presented demonstrate that 1) both cysteines are free thiols; 2) Cys-106 is more exposed than Cys-255; 3) substrate-induced inactivation is not caused by cysteine modification; 4) neither cysteine is absolutely essential for bond making or breaking events during catalysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The recent development of electron paramagnetic resonance (EPR) permits its application for in vivo studies of nitric oxide (NO). In this study, we tried to obtain 3D EPR images of endogenous NO in the abdominal organs of lipopolysuccaride (LPS) treated mice. Male ICR mice, each weighing about 30 g, received 10 mg/kg of LPS intraperitoneally. Six hours later, a spin trapping reagent comprised of iron and an N-dithiocarboxy sarcosine complex (Fe(DTCS)2, Fe 200 mM, DTCS/Fe = 3) were injected subcutaneously. Two hours after this treatment, the mice were fixed in a plastic holder and set in the EPR system, equipped with a loop-gap resonator and a 1 GHz microwave. NO was detected as an NO-Fe(DTCS)2 complex, which had a characteristic 3-line EPR spectrum. NO-Fe(DTCS)2 complexes in organ homogenates were also measured using a conventional X-band EPR system. NO-Fe(DTCS)2 spectra were obtained in the upper abdominal area of LPS treated mice at 8 h after the LPS injection. 3D EPR tiled and stereoscopic images of the NO distribution in the hepatic and renal areas were obtained at the same time. The NO-Fe(DTCS)2 distribution in abdominal organs was confirmed in each organ homogenate using conventional X-band EPR. This is the first known EPR image of NO in live mice kidneys.  相似文献   

16.
Pseudomonas testosteroni protocatechuate 4,5-dioxygenase catalyzes extradiol-type oxygenolytic cleavage of the aromatic ring of its substrate. The essential active site Fe2+ binds nitric oxide (NO) to produce an EPR active complex with an electronic spin of S = 3/2. Hyperfine broadening of the EPR resonances of the nitrosyl complex of the enzyme by protocatechuate (3,4-(OH)2-benzoate, PCA) enriched specifically with 17O (I = 5/2) in either the 3 or the 4 hydroxyl group shows that both groups can bind directly to the Fe2+ in the ternary complex. Analogous results are obtained for PCA binding to catechol 2,3-dioxygenase-NO complex suggesting that substrate binding by the Fe2+ may be a general property of extradiol dioxygenases. The protocatechuate 4,5-dioxygenase inhibitor, 4-17OH-benzoate binds directly to the Fe of the nitrosyl adduct of the enzyme through the OH group. Since previous studies have shown that water also is bound to the Fe in this ternary complex, but not in the ternary complex with PCA, the data strongly imply that there are 3 sites in the Fe coordination which can be occupied by exogenous ligands. 3-17OH-benzoate is an inhibitor of the enzyme but does not elicit detectable hyperfine broadening in the EPR spectrum of the nitrosyl adduct suggesting that it binds to the enzyme, but not to the Fe. The EPR spectra of ternary enzyme-NO complexes with PCA or 4-OH-benzoate labeled with 17O exclusively in the carboxylate substituent are not broadened, suggesting that this moiety does not bind to the Fe.  相似文献   

17.
Isopenicillin N synthase (IPNS), a non-heme iron oxidase central to penicillin and cephalosporin biosynthesis, catalyzes an energetically demanding chemical transformation to produce isopenicillin N from the tripeptide delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-valine (ACV). We describe the synthesis of two cyclopropyl-containing tripeptide analogues, delta-(l-alpha-aminoadipoyl)-l-cysteinyl-beta-methyl-d-cyclopropylglycine and delta-(l-alpha-aminoadipoyl)-l-cysteinyl-d-cyclopropylglycine, designed as probes for the mechanism of IPNS. We have solved the X-ray crystal structures of these substrates in complex with IPNS and propose a revised mechanism for the IPNS-mediated turnover of these compounds. Relative to the previously determined IPNS-Fe(II)-ACV structure, key differences exist in substrate orientation and water occupancy, which allow for an explanation of the differences in reactivity of these substrates.  相似文献   

18.
Binding of ligands to the active site Fe3+ of protocatechuate 3,4-dioxygenase is investigated using EPR-detected transferred hyperfine coupling from isotopically labeled substrates, inhibitors, and cyanide. Broadening is observed in EPR resonances from the anaerobic enzyme complex with homoprotocatechuate (3,4-dihydroxyphenylacetate), a slow substrate, enriched with 17O (I = 5/2) in either the 3-OH or the 4-OH group. This shows that this substrate binds directly to the Fe3+ and strongly suggests that an iron chelate can be formed. Cyanide is known to bind to the enzyme in at least two steps, forming first a high spin and then a low spin complex (Whittaker, J. W., and Lipscomb, J. D. (1984) J. Biol. Chem. 259, 4487-4495). Hyperfine broadening from [13C]cyanide (I = 1/2) is observed in the EPR spectra of both complexes, showing that cyanide is an Fe3+ ligand in each case. Cyanide binding is also at least biphasic in the presence of protocatechuate (PCA). The initial high spin enzyme-PCA-cyanide complex forms rapidly and exhibits a unique EPR spectrum. Broadening from PCA enriched with 17O in either the 3-OH or the 4-OH group is detected showing that PCA binds to the iron, probably as a chelate complex. In contrast, no broadening from [13C]cyanide is detected for this complex suggesting that cyanide binds at a site away from the Fe3+. Steady state kinetic measurements of cyanide inhibition of PCA turnover are consistent with two rapidly exchanging cyanide binding sites that inhibit PCA binding and which can be simultaneously occupied. Formation of the nearly irreversible, low spin enzyme-PCA-cyanide complex is competitively inhibited by PCA. Transient kinetics of the formation of this complex are second order in cyanide implying that two cyanides bind. Broadening in the EPR spectrum of this complex is detected from [13C]cyanide, but not from [17O]PCA, suggesting that PCA is displaced. This study provides the first direct evidence for chelation of the active site Fe3+ by substrates and for a small molecule binding site away from the iron in intradiol dioxygenases.  相似文献   

19.
Two commonly used hydrophobic and hydrophilic spin traps for NO, namely Fe2+(DETC)(2)and Fe2+(MGD)(2), respectively, were analyzed via EPR spectroscopy. EPR spectra of trapped NO, together with field position standards, were recorded both in the frozen state and at room temperature. We present a detailed characterization of the EPR spectra of the above paramagnetic NO complexes, concerning g-value, hyperfine splitting and linewidths. This study also provides spectroscopic data required to develop a quantitative and sensitive detection system for nitric oxide both in hydrophobic and hydrophilic aqueous media.  相似文献   

20.
2D NMR spectra of the high-potential iron-sulfur protein (HiPIP) from Chromatium vinosum have been used to obtain partial resonance assignments for the oxidized paramagnetic redox state of the protein. Sequence-specific assignments were made using NOESY and COSY spectra in H2O and D2O of the following backbone segments: Asn-5-Arg-33, Glu-39-Asp-45, Gly-55-Cys-63, Gly-68-Ala-78, and Leu-82-Gly-85. NOESY spectra with a spectral width wide enough to include the hyperfine-shifted resonances revealed numerous NOE contacts between these signals and those in the main envelope of the proton spectrum. With the aid of the X-ray crystal structure [Carter, C.W., Kraut, J., Freer, S. T., Xuong, N. H., Alden, R. A., & Bartsch, R. G. (1974) J. Biol. Chem. 249, 4212], these NOEs permitted seven of the nine hyperfine-shifted signals to be assigned to three of the cysteine residues liganded to the metal cluster (Cys-43, Cys-46, and Cys-77). The other two hyperfine-shifted signals produced no detectable NOEs to other resonances in the spectrum and were tentatively assigned to the remaining cysteinyl ligand (Cys-63). These assignments, in conjunction with recent theoretical models of the electronic structure of the Fe4S4 cluster [Noodleman, L. (1988) Inorg. Chem. 27, 3677; Bertini, I., Briganti, F., Luchinat, C., Scozzafava, A., & Sola, M. (1991) J. Am. Chem. Soc. 113, 1237], indicate that the iron atoms coordinated to Cys-63 and Cys-77 are those of the mixed-valence Fe(3+)-Fe2+ pair whereas Cys-43 and Cys-46 are ligands to the Fe(3+)-Fe3+ metal pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号