首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

It is known that subjective contours are perceived even when a figure involves motion. However, whether this includes the perception of rigidity or deformation of an illusory surface remains unknown. In particular, since most visual stimuli used in previous studies were generated in order to induce illusory rigid objects, the potential perception of material properties such as rigidity or elasticity in these illusory surfaces has not been examined. Here, we elucidate whether the magnitude of phase difference in oscillation influences the visual impressions of an object''s elasticity (Experiment 1) and identify whether such elasticity perceptions are accompanied by the shape of the subjective contours, which can be assumed to be strongly correlated with the perception of rigidity (Experiment 2).

Methodology/Principal Findings

In Experiment 1, the phase differences in the oscillating motion of inducers were controlled to investigate whether they influenced the visual impression of an illusory object''s elasticity. The results demonstrated that the impression of the elasticity of an illusory surface with subjective contours was systematically flipped with the degree of phase difference. In Experiment 2, we examined whether the subjective contours of a perceived object appeared linear or curved using multi-dimensional scaling analysis. The results indicated that the contours of a moving illusory object were perceived as more curved than linear in all phase-difference conditions.

Conclusions/Significance

These findings suggest that the phase difference in an object''s motion is a significant factor in the material perception of motion-related elasticity.  相似文献   

2.
Facet joints provide rigidity to the lumbar motion segment and thus protect the disk, particularly against torsional injury. A surgical procedure that fully or partially removes the facet joints (facetectomy) will decrease the mechanical stiffness of the motion segment, and potentially place the disk at risk of injury. Analytical models can be used to understand the effect of facet joints on motion segment stability. Using a facet joint model that represents the contact area as contact between two surfaces rather than as point contact, it was concluded that a substantial sudden change in rotational motion, due to applied torsion moment, was observed after 75 percent of any one of the facet joints was removed. Applied torsional moment loading produced coupled extension motion in the intact motion segment. This coupled motion also experienced a large change following complete unilateral facetectomy. Clinically, the present study showed that surgical intervention in the form of unilateral or bilateral total facetectomy might require fusion to reduce the primary torsion motion.  相似文献   

3.
Ida H  Fukuhara K  Ishii M 《PloS one》2012,7(3):e33879
The objective of this study was to assess the cognitive effect of human character models on the observer's ability to extract relevant information from computer graphics animation of tennis serve motions. Three digital human models (polygon, shadow, and stick-figure) were used to display the computationally simulated serve motions, which were perturbed at the racket-arm by modulating the speed (slower or faster) of one of the joint rotations (wrist, elbow, or shoulder). Twenty-one experienced tennis players and 21 novices made discrimination responses about the modulated joint and also specified the perceived swing speeds on a visual analogue scale. The result showed that the discrimination accuracies of the experienced players were both above and below chance level depending on the modulated joint whereas those of the novices mostly remained at chance or guessing levels. As far as the experienced players were concerned, the polygon model decreased the discrimination accuracy as compared with the stick-figure model. This suggests that the complicated pictorial information may have a distracting effect on the recognition of the observed action. On the other hand, the perceived swing speed of the perturbed motion relative to the control was lower for the stick-figure model than for the polygon model regardless of the skill level. This result suggests that the simplified visual information can bias the perception of the motion speed toward slower. It was also shown that the increasing the joint rotation speed increased the perceived swing speed, although the resulting racket velocity had little correlation with this speed sensation. Collectively, observer's recognition of the motion pattern and perception of the motion speed can be affected by the pictorial information of the human model as well as by the perturbation processing applied to the observed motion.  相似文献   

4.
The present investigation examined the variability of sitting postural movement in relation to the development of perceived discomfort by means of linear and nonlinear analysis. Nine male subjects participated in this study. Discomfort ratings, kinetic and kinematics data were recorded during prolonged sitting. Body part discomfort index, displacement of the center of pressure (COP) in anterior–posterior and medial–lateral directions as well as lumbar curvature were calculated. Mean, standard deviation and sample entropy values were extracted from COP and lumbar curvature signals. Standard deviation and sample entropy were used to assess the degree of variability and complexity of sitting. A correlation analysis was performed to determine the correlation of each parameter with discomfort. There were no correlations between discomfort and any of the mean values. On the contrary, the standard deviations of the COP displacement in both directions and lumbar curvature were positively correlated to discomfort, whereas sample entropies were negatively correlated. The present study suggests that the increase in degree of variability and the decrease in complexity of sitting postural control are interrelated with the increase in perceived discomfort. Finally, the present study underlined the importance of quantifying motor variability for understanding the biomechanics of seated posture.  相似文献   

5.
Three-dimensional visualization of biological samples is essential for understanding their architecture and function. However, it is often challenging due to the macromolecular crowdedness of the samples and low signal-to-noise ratio of the cryo-electron tomograms. Denoising and segmentation techniques address this challenge by increasing the signal-to-noise ratio and by simplifying the data in images. Here, mean curvature motion is presented as a method that can be applied to segmentation results, created either manually or automatically, to significantly improve both the visual quality and downstream computational handling. Mean curvature motion is a process based on nonlinear anisotropic diffusion that smooths along edges and causes high-curvature features, such as noise, to disappear. In combination with level-set methods for image erosion and dilation, the application of mean curvature motion to electron tomograms and segmentations removes sharp edges or spikes in the visualized surfaces, produces an improved surface quality, and improves overall visualization and interpretation of the three-dimensional images.  相似文献   

6.
Changes in mechanical properties of the cytoplasm have been implicated in cell motility, but there is little information about these properties in specific regions of the cell at specific stages of the cell migration process. Fish epidermal keratocytes with their stable shape and steady motion represent an ideal system to elucidate temporal and spatial dynamics of the mechanical state of the cytoplasm. As the shape of the cell does not change during motion and actin network in the lamellipodia is nearly stationary with respect to the substrate, the spatial changes in the direction from the front to the rear of the cell reflect temporal changes in the actin network after its assembly at the leading edge. We have utilized atomic force microscopy to determine the rigidity of fish keratocyte lamellipodia as a function of time/distance from the leading edge. Although vertical thickness remained nearly constant throughout the lamellipodia, the rigidity exhibited a gradual but significant decrease from the front to the rear of the lamellipodia. The rigidity profile resembled closely the actin density profile, suggesting that the dynamics of rigidity are due to actin depolymerization. The decrease of rigidity may play a role in facilitating the contraction of the actin-myosin network at the lamellipodium/cell body transition zone.  相似文献   

7.
Human off-vertical axis rotation (OVAR) in the dark typically produces perceived motion about a cone, the amplitude of which changes as a function of frequency. This perception is commonly attributed to the fact that both the OVAR and the conical motion have a gravity vector that rotates about the subject. Little-known, however, is that this rotating-gravity explanation for perceived conical motion is inconsistent with basic observations about self-motion perception: (a) that the perceived vertical moves toward alignment with the gravito-inertial acceleration (GIA) and (b) that perceived translation arises from perceived linear acceleration, as derived from the portion of the GIA not associated with gravity. Mathematically proved in this article is the fact that during OVAR these properties imply mismatched phase of perceived tilt and translation, in contrast to the common perception of matched phases which correspond to conical motion with pivot at the bottom. This result demonstrates that an additional perceptual rule is required to explain perception in OVAR. This study investigates, both analytically and computationally, the phase relationship between tilt and translation at different stimulus rates—slow (45°/s) and fast (180°/s), and the three-dimensional shape of predicted perceived motion, under different sets of hypotheses about self-motion perception. We propose that for human motion perception, there is a phase-linking of tilt and translation movements to construct a perception of one’s overall motion path. Alternative hypotheses to achieve the phase match were tested with three-dimensional computational models, comparing the output with published experimental reports. The best fit with experimental data was the hypothesis that the phase of perceived translation was linked to perceived tilt, while the perceived tilt was determined by the GIA. This hypothesis successfully predicted the bottom-pivot cone commonly reported and a reduced sense of tilt during fast OVAR. Similar considerations apply to the hilltop illusion often reported during horizontal linear oscillation. Known response properties of central neurons are consistent with this ability to phase-link translation with tilt. In addition, the competing “standard” model was mathematically proved to be unable to predict the bottom-pivot cone regardless of the values used for parameters in the model.  相似文献   

8.
In the context of the models of structure from motion visual processing, we propose that the optic-flow field is a source of information for the perception of the curvature of a smooth surface in motion. In particular, it is shown how the spin variation (SV), a second spatial derivative of the retinal velocity field, is mathematically related to the curvature of the surface. Under the hypothesis that the visual system relies on SV to analyse the structure of a moving surface, a neural scheme for SV detection is proposed and psychophysical predictions are developed. Results obtained on artificial images show that the SV scheme presents a rather weak sensitivity to noise in conditions of low image velocity.  相似文献   

9.
Torsion angle analysis of glycolipid order at membrane surfaces.   总被引:3,自引:3,他引:0  
  相似文献   

10.
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.  相似文献   

11.
When analyzing computer simulations of mixtures of lipids and water, the questions to be answered are often of a morphological nature. They can deal with global properties, like the kind of phase that is adopted or the presence or absence of certain key features like a pore or stalk, or with local properties, like the local curvature present at a particular part of the lipid/water interface. While in principle all of the information relating to the global and local morphological properties of a system can be obtained from the set of atomic coordinates generated by a computer simulation, the extraction of this information is a tedious task that usually involves using a visualization program and performing the analysis by eye. Here we present a tool that employs the technique of morphological image analysis (MIA) to automatically extract the global morphology—as given by Minkowski functionals—from a set of atomic coordinates, and creates an image of the system onto which the local curvatures are mapped as a color code.  相似文献   

12.
Effect of ethidium on the torsion constants of linear and supercoiled DNAs.   总被引:5,自引:0,他引:5  
The torsion elastic constants (alpha) of linear pBR322 (4363 bp) and pUC8 (2717 bp) DNAs and supercoiled pBR322 and pJMSII (4375 bp) DNAs are measured in 0.1 M NaCl as a function of added ethidium/base-pair (EB/BP) ratio by studying the fluorescence polarization anisotropy (FPA) of the intercalated ethidium. The time-resolved FPA is measured by using a picosecond dye laser for excitation and time-correlated single photon counting detection. Previously developed theory for the emission anisotropy is generalized to incorporate rotations of the transition dipole due to excitation transfer. The excitation transfers are simulated by a Monte Carlo procedure (Genest et al., Biophys. Chem. 1 (1974) 266-278) and the consequent rotations of the transition dipole are superposed on the Brownian rotations. After accounting for excitation transfer, the torsion constants of the linear DNAs are found to be essentially independent of intercalated ethidium up to a binding ratio r = 0.10 dye/bp. Dynamic light scattering measurements on linear pUC8 DNA confirm that the torsion constant is independent of binding ratio up to r = 0.20 dye/bp. If alpha d denotes the torsion constant between ethidium and a base-pair, and alpha 0 that between two base-pairs, then our data imply that alpha d/alpha 0 lies in the range 0.65 to 1.64 with a most probable value of 1.0. The torsion constants of supercoiled DNAs decrease substantially with increasing binding ratio even after accounting for excitation transfer. At the binding ratio r* = 0.064, where the superhelix density vanishes and superhelical strain is completely relaxed, the torsion constant of the supercoiled pBR322 DNA/dye complex lies below that of the corresponding linear DNA/dye complex by about 30%. This contradicts the conventional view according to which linear, nicked circular, and supercoiled DNA/dye complexes with r = r* should coexist with the same concentration of free dye, display the same distribution of bound dye, and exhibit identical secondary structures, twisting and bending rigidities, and FPA dynamics. These and other observations imply the existence of metastable secondary structure in freshly relaxed supercoiled DNAs. A tentative explanation is presented for these and other unexpected observations on supercoiled DNAs.  相似文献   

13.
Sensing is often implicitly assumed to be the passive acquisition of information. However, part of the sensory information is generated actively when animals move. For instance, humans shift their gaze actively in a sequence of saccades towards interesting locations in a scene. Likewise, many insects shift their gaze by saccadic turns of body and head, keeping their gaze fixed between saccades. Here we employ a novel panoramic virtual reality stimulator and show that motion computation in a blowfly visual interneuron is tuned to make efficient use of the characteristic dynamics of retinal image flow. The neuron is able to extract information about the spatial layout of the environment by utilizing intervals of stable vision resulting from the saccadic viewing strategy. The extraction is possible because the retinal image flow evoked by translation, containing information about object distances, is confined to low frequencies. This flow component can be derived from the total optic flow between saccades because the residual intersaccadic head rotations are small and encoded at higher frequencies. Information about the spatial layout of the environment can thus be extracted by the neuron in a computationally parsimonious way. These results on neuronal function based on naturalistic, behaviourally generated optic flow are in stark contrast to conclusions based on conventional visual stimuli that the neuron primarily represents a detector for yaw rotations of the animal.  相似文献   

14.
Human cortical regions involved in extracting depth from motion   总被引:11,自引:0,他引:11  
We used functional magnetic resonance imaging (fMRI) to investigate brain regions involved in extracting three-dimensional structure from motion. A factorial design included two-dimensional and three-dimensional structures undergoing rigid and nonrigid motions. As predicted from monkey data, the human homolog of MT/V5 was significantly more active when subjects viewed three-dimensional (as opposed to two-dimensional) displays, irrespective of their rigidity. Human MT/V5+ (hMT/V5+) is part of a network with right hemisphere dominance involved in extracting depth from motion, including a lateral occipital region, five sites along the intraparietal sulcus (IPS), and two ventral occipital regions. Control experiments confirmed that this pattern of activation is most strongly correlated with perceived three-dimensional structure, in as much as it arises from motion and cannot be attributed to numerous two-dimensional image properties or to saliency.  相似文献   

15.
Langley K 《Spatial Vision》2002,15(2):171-190
A computational model of motion perception is proposed. The model, which is gradient-based, adheres to the neural constraint that transmitted signals are positive-valued functions by posing the estimation of image motion as a quadratic programming problem combined with total-least squares: a model that assumes that image signals are contaminated by noise in both the spatial and temporal dimensions. By shrinking motion estimates with a regularizer whose subtractive effect introduces a contrast dependent speed threshold into motion computations, it is shown that the total-least squares model when posed as a quadratic programming problem, is capable of explaining both increases and decreases in perceived speed as these effects were reported by Thompson (1982) to vary as a function of image contrast and temporal frequency. The correlation that exists between the model's contrast speed response and results reported from visual psychophysics is consistent with the view that the visual system assumes that image signals may be contaminated by noise in both the spatial and the temporal domain, and that visual motion is influenced by the consequence of these assumptions.  相似文献   

16.
Bananas are among the largest herbs in the world and their lightweight petioles hold up huge leaves. This study examined how the petioles manage to achieve adequate rigidity to do this, while allowing extensive and reversible reconfiguration in high winds. Morphological and anatomical examination of the petioles and leaves of Musa textilis suggested how these two apparently incompatible abilities are achieved. The hollow U-shaped section of the petiole and the longitudinal strengthening elements in its outer skin give it adequate rigidity, while its ventral curvature help support the leaf without the need for thick lateral veins. These features, however, also allow the petiole to reconfigure by twisting away from the wind, while the leaf can fold away. In addition, two sets of internal structures, longitudinal partitions and transverse stellate parenchyma plates, help prevent dorsoventral flattening, allowing the petiole to flex further away from the wind without buckling. These ideas were tested and verified by a range of mechanical tests. Simple four-point-bending and torsion tests showed that the petioles are indeed far more compliant in torsion than in bending. Axial bending tests and crushing tests showed that petioles could be flexed twice as far and were four times as resistant to dorsoventral flattening when intact than when the internal tissue is removed. The banana petiole, therefore, seems to be an excellent example of natural integrated mechanical design.  相似文献   

17.
Results are presented on the analysis of three-dimensional motion of compound cilia or cirri in voltage-clamped specimens of the protozoan Stylonychia mytilus. Time series of three-dimensional data were obtained by using the anaxial illumination method for simultaneous recording of stereoscopic video images. Data processing involved the following steps: determination of a reference coordinate system based solely on features present in each stereo-pair; tracing of cirral axes in digitized images, conversion to parameter curves by means of least-squares polynomial approximation, conversion of pairs of two-dimensional data to a series of three-dimensional data; correction for distortion due to projective shortening and conversion to a series of polynomial triplets, and analysis of the periodical components of the motion pattern in the frequency domain. Reconstructed beating cycles show typical differences between hyperpolarization-induced ciliary activity and depolarization-induced ciliary activity. Reconstructions of the motion of the basal segment of a cirrus are in agreement with existing data. Analysis of the curvature and torsion of a cirral axis during beating does not reveal any simple pattern of propagated activity within the axoneme. The return stroke may be subdivided into two phases. First, a curvature peak develops proximally. Secondly, a region with increased torsion arises more distally and spreads out in proximal direction. Both curvature and torsion return to minimal values by the beginning of the power stroke.  相似文献   

18.
Barth E 《Spatial Vision》2000,13(2-3):193-199
As opposed to dealing with the geometry of objects in the 3D world, this paper considers the geometry of the visual input itself, i.e. the geometry of the spatio-temporal hypersurface defined by image intensity as a function of two spatial coordinates and time. The results show how the Riemann curvature tensor of this hypersurface represents speed and direction of motion, and thereby allows to predict global motion percepts and properties of MT neurons. It is argued that important aspects of early and middle level visual coding may be understood as resulting from basic geometric processing of the spatio-temporal visual input. Finally, applications show that the approach can improve the computation of motion.  相似文献   

19.
Lack of complexity in general movements in early infancy is an important marker of potential motor disorders of neurological origin, such as cerebral palsy. Quantitative approaches to characterising this complexity are hampered by experimental difficulties in recording from infants in their first few months of life. The aim of this study was to design and validate bespoke surface-marker clusters to facilitate data acquisition and enable full quantification of joint rotations. The clusters were validated by recording the controlled movements of a soft-body dummy doll simultaneously with an optical (Qualisys) and inertial (XSens) motion capture system. The angles estimated from the optical system were compared with those measured by the inertial system. We demonstrate that the surface-marker based approach compares well with the use of an inertial system to obtain "direct" readings of the rotations whilst alleviating the issues associated with the use of an optical motion capture system. We briefly report use of this technique in 1-5 month old infants. By enabling full quantification of joint rotation, use of the custom made markers could pave the way for early diagnosis of movement disorders.  相似文献   

20.
Anatomical landmarks on the body surface can be measured with high accuracy by using rasterstereography and surface curvature analysis. The present study shows that the lumbar dimples can be localized with a statistical error of about 1 mm. It is generally assumed that the dimples are in close relation to the pelvis (in particular to the PSISs) and may thus be taken as indicators for pelvis movements. By introducing an artificial pelvis tilt of up to +/- 10 degrees this relation was examined. In fact, a nearly perfect correlation (r approximately equal to 0.99) between landmark and pelvis movements was observed. Asymmetries of pelvis motion due to scoliotic deformity were not observed. There was, however, a systematic lag of the dimple movements, resulting in a displacement of the dimples of up to +/- 1.5 mm relative to the pelvis (for +/- 10 degrees pelvis tilt). Either a soft tissue effect or a torsion of the pelvis may be responsible for this behaviour. The theory of pelvis torsion is confirmed by the fact that the orientation of the back surface at the locus of the dimples reveals a corresponding torsion of similar magnitude and sign. A torsion angle of about +/- 1.5 degrees in either sacro-iliac joint is sufficient to explain the observed dimple lag and the surface torsion. An independent measurement (e.g. using roentgenphotogrammetry) would be desirable to further validate this theory. According to our measurements the dimples of the PSISs cannot be taken as exact indicators for orientation and movement of the pelvis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号