首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the family of ADP-ribosyltransferases (ADPRT) and catalyzes the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE is further the first ADPRT which could be shown to bind iron through a Fe-S center, which is crucial for the catalytic activity. Here we present the NMR solution structure of NarE, which shows structural homology to other ADPRTs. Using NMR titration experiments we could identify from Chemical Shift Perturbation data both the NAD binding site, which is in perfect agreement with a consensus sequence analysis between different ADPRTs, as well as the iron coordination site, which consists of 2 cysteines and 2 histidines. This atypical iron coordination is also capable to bind zinc. These results could be fortified by site-directed mutagenesis of the catalytic region, which identified two functionally crucial residues. We could further identify a main interaction region of NarE with antibodies using two complementary methods based on antibody immobilization, proteolytic digestion, and mass spectrometry. This study combines structural and functional features of NarE providing for the first time a characterization of an iron-dependent ADPRT.  相似文献   

2.
3.
Functional comparison of the NAD binding cleft of ADP-ribosylating toxins   总被引:2,自引:0,他引:2  
Dolan KM  Lindenmayer G  Olson JC 《Biochemistry》2000,39(28):8266-8275
Although a common core structure forms the active site of ADP-ribosylating (ADPRT) toxins, the limited-sequence homology within this region suggests that different mechanisms are being used by toxins to perform their shared function. To explain differences in their mechanisms of NAD binding and hydrolysis, the functional interrelationship of residues predicted to perform similar functions in the beta3-strand of the NAD binding cleft of different ADPRT toxins was compared. Replacing Tyr54 in the A-subunit of diphtheria toxin (DTA) with a serine, its functional homologue in cholera toxin (CT), resulted in the loss of catalytic function but not NAD binding. The catalytic role of the aromatic portion of Tyr54 in the ADPRT reaction was confirmed by the ability of a Tyr54-to-phenylalanine DTA mutant to retain ADPRT activity. In reciprocal studies, positioning a tyrosine in the beta3-strand of the A1-subunit of CT (CTA1) caused both loss of function and altered structure. The restricted flexibility of the CTA1 active site relative to function became evident upon the loss of ADPRT activity when a conservative Val60-to-leucine mutation was performed. We conclude from our studies that DT and CT maintain a similar mechanism of NAD binding but differ in their mechanisms of NAD hydrolysis. The aromatic moiety at position 54 in DT is integral to NAD hydrolysis, while NAD hydrolysis in CT appears highly dependent on the precise positioning of specific residues within the beta3-strand of the active-site cleft.  相似文献   

4.
The X-ray structure of the catalytic domain of Pseudomonas aeruginosa exotoxin A (PE24) has recently been solved to high resolution, facilitating studies on the interaction of PE24 with its target substrate, eukaryotic elongation factor-2 (eEF-2). PE24 exhibits mono-ADP-ribosyltransferase (ADPRT) activity in a mechanism that has been proposed to feature a nucleophilic attack by the diphthamide residue (nucleophile) of eEF-2 on the C-1 of the nicotinamide ribose of NAD(+). The interaction of wheat germ eEF-2 with PE24 was studied by employing an enzyme-linked immunosorbent assay (ELISA), devised to assess protein-protein interactions. It was shown that the proteins associate with each other only in the presence of the enzyme's nucleotide substrate, NAD(+), and exhibit a dose-dependent association that is saturable. The apparent dissociation constant (K(d)) for this protein-protein interaction is 50 nM and is salt-dependent. The association is maximal at low ionic strength and is progressively weaker at higher salt concentrations, which corroborates previous findings on the salt dependence of ADPRT activity for this toxin. This finding suggests that the sensitivity of ADPRT activity toward high salt resides in the interaction between the catalytic domain of the toxin and eEF-2. A major product of the glycohydrolase activity of PE24, nicotinamide, inhibits the binding between PE24 and eEF-2 with an ID(50) of 20 microM. The naturally occurring, noncatalytic mutant of PE24, H426Y, did not bind eEF-2 in the ELISA, verifying that His 426 is located at the center of the eEF-2 binding site within ETA.  相似文献   

5.
Structural analogues of benzamide (BA) containing a sulfur atom were tested for their ability to inhibit the enzyme poly(ADP-ribose)transferase (ADPRT) in cultured Chinese Hamster Ovary (CHO) cells. These compounds were benzene sulfonamide (BSA), thiobenzamide (TB) and 3-thiophene carboxamide (TCA) and their activity was compared with that of benzamide in a number of experimental systems. Results have shown that substitution of the carboxamide function with a sulfonamide group produces an almost complete loss of the enzyme inhibiting activity. Also inactive was TB which however was found to display inhibition of the DNA damaging effect of hydrogen peroxide, thus suggesting a hydroxyl radical scavenging effect of TB. TCA, an isostere of BA, produced some inhibition of ADPRT, although its activity was markedly lower than that of the parental drug. Therefore, these results indicate that: 1) ADPRT inhibiting activity is inverse function of dipole moments, hydrogen bonding strength and steric hindrance of the amide functional group and 2) substitution of benzene with thiophene results in a substantial reduction of the enzyme inhibiting activity.  相似文献   

6.
Two enzymatic activities of the nuclear enzyme poly(ADP-ribose) polymerase or transferase (ADPRT, EC 2.4.2.30), a DNA-associating abundant nuclear protein with multiple molecular activities, have been determined in HL60 cells prior to and after their exposure to 1 microM retinoic acid, which results in the induction of differentiation to mature granulocytes in 4-5 days. The cellular concentration of immunoreactive ADPRT protein molecules in differentiated granulocytes remained unchanged compared to that in HL60 cells prior to retinoic acid addition (3.17 +/- 1.05 ng/10(5) cells), as did the apparent activity of poly(ADP-ribose) glycohydrolase of nuclei. On the other hand, the poly(ADP-ribose) synthesizing capacity of permeabilized cells or isolated nuclei decreased precipitously upon retinoic acid-induced differentiation, whereas the NAD glycohydrolase activity of nuclei significantly increased. The nuclear NAD glycohydrolase activity was identified as an ADPRT-catalyzed enzymatic activity by its unreactivity toward ethenoadenine NAD as a substrate added to nuclei or to purified ADPRT. During the decrease in in vitro poly(ADP-ribose) polymerase activity of nuclei following retinoic acid treatment, the quantity of endogenously poly(ADP-ribosylated) ADPRT significantly increased, as determined by chromatographic isolation of this modified protein by the boronate affinity technique, followed by gel electrophoresis and immunotransblot. When homogenous isolated ADPRT was first ADP-ribosylated in vitro, it lost its capacity to catalyze further polymer synthesis, whereas the NAD glycohydrolase function of the automodified enzyme was greatly augmented. Since results of in vivo and in vitro experiments coincide, it appears that in retinoic acid-induced differentiated cells (granulocytes) the autopoly(ADP-ribosylated) ADPRT performs a predominantly, if not exclusively, NAD glycohydrolase function.  相似文献   

7.
Streptococcus pyogenes, the aetiological agent of both respiratory and skin infections, produces numerous exotoxins to establish infection. This report identifies a new exotoxin produced by this organism, termed SpyA, for S. pyogenesADP-ribosylating toxin. SpyA, MW 24.9, has amino acid identity with the ADP-riboslytransferases (ADPRTs) Staphylococcus aureus EDIN and Clostridium botulinum C3. Recombinant SpyA was able to hydrolyse beta-NAD(+), and this activity was dependent on a glutamate at position 187. SpyA has a putative biglutamate active site, and similar to most biglutamate ADPRTs, was able to ADP-ribosylate poly-l-arginine. SpyA modified numerous proteins in both CHO and HeLa cell lysates. Two-dimesional gel analysis and MALDI-TOF MS analysis of modified proteins indicated that vimentin, tropomyosin and actin, all cytoskeletal proteins, are targets. Expression of spyA in HeLa cells resulted in loss of actin microfilaments. We hypothesize that SpyA is produced by S. pyogenes to disrupt cytoskeletal structures and promote colonization of the host.  相似文献   

8.
The virulence of the opportunistic pathogen Pseudomonas aeruginosa (Pa) is in part mediated by the type III secretion (TTS) of bacterial proteins into eukaryotic hosts. Exoenzyme S (ExoS) is a bifunctional Pa TTS effector protein, with GTPase-activating (GAP) and ADP-ribosyltransferase (ADPRT) activities. Known cellular substrates of TTS-translocated ExoS (TTS-ExoS) ADPRT activity include proteins in the Ras superfamily and ERM family proteins. This study describes the ADP-ribosylation of a non-G-protein substrate of TTS-ExoS, cyclophilin A (CpA), a peptidyl-prolyl isomerase (PPIase). Four novel 17 kDa proteins (pI 6.5-6.8) were recognized in a proteomic screen of lysates of human epithelial cells that had been exposed to ExoS-producing Pa, but not an isogenic non-ExoS producing strain. The proteins were identified as isoforms of CpA using MALDI-TOF mass spectrometry and confirmed by Western blotting. Mutagenesis analysis identified arginine 55 and 69 of CpA as sites of ExoS ADP-ribosylation. Examination of the effect of ExoS ADP-ribosylation on CpA function found a moderate (19%) decrease in prolyl isomerization of a Xaa-Pro containing peptides. In comparison, GST-CpA co-immunoprecipitation studies found ExoS ADP-ribosylation of CpA to efficiently inhibit CpA binding to calcineurin/PP2B phosphatase. Our results support that ExoS ADP-ribosylates and affects the function of the cytosolic protein, CpA, with the predominant functional effect relating to interference of CpA-cellular protein interactions.  相似文献   

9.
The ADP-ribosylating toxins (ADPRTs) are a family of toxins that catalyse the hydrolysis of NAD and the transfer of the ADP-ribose moiety onto a target. This family includes many notorious killers, responsible for thousands of deaths annually including: cholera, enterotoxic Escherichia coli, whooping cough, diphtheria and a plethora of Clostridial binary toxins. Despite their notoriety as pathogens, the ADPRTs have been extensively used as cellular tools to study and elucidate the functions of the small GTPases that they target. There are four classes of ADPRTs and at least one structure representative of each of these classes has been determined. They all share a common fold and several motifs around the active site that collectively facilitate the binding and transfer of the ADP-ribose moiety of NAD to their protein targets. In this review, we present an overview of the physiology and cellular qualities of the bacterial ADPRTs and take an in-depth look at the structural motifs that differentiate the different classes of bacterial ADPRTs in relation to their function.  相似文献   

10.
ADP-ribosylation of histones and non-histone nuclear proteins was studied in isolated nuclei during the naturally synchronous cell cycle of Physarum polycephalum. Aside from ADP-ribosyltransferase (ADPRT) itself, histones and high mobility group-like proteins are the main acceptors for ADP-ribose. The majority of these ADP-ribose residues is NH2OH-labile. ADP-ribosylation of the nuclear proteins is periodic during the cell cycle with maximum incorporation in early to mid G2-phase. In activity gels two enzyme forms with Mr of 115,000 and 75,000 can be identified. Both enzyme forms are present at a constant ratio of 3:1 during the cell cycle. The higher molecular mass form cannot be converted in vitro to the low molecular mass form, excluding an artificial degradation during isolation of nuclei. The ADPRT forms were purified and separated by h.p.l.c. The low molecular mass form is inhibited by different ADPRT inhibitors to a stronger extent and is the main acceptor for auto-ADP-ribosylation. The high molecular mass form is only moderately auto-ADP-ribosylated.  相似文献   

11.
Y N Yu  C Ding  Z N Cai  X R Chen 《Mutation research》1986,174(3):233-239
ADP-ribosyl transferase (ADPRT) is a DNA-dependent chromatin-associated enzyme which covalently attaches ADP-ribose moieties derived from NAD+ to protein acceptors to form poly(ADP-ribose). ADPRT activity is strongly stimulated by breaks in DNA, and it is suggested that its activity is required for efficient DNA excision repair. In this paper, a cell-cycle-dependent fluctuation of basal ADPRT activity was demonstrated by measuring it in permeabilized FL cells. The cell used was subjected to arginine starvation for 48 h before being released from the block by replacement of deficient medium with complete medium and cells in different proliferating stages were traced by [3H]TdR pulse labelling and obtained at different intervals after block release. The peak basal ADPRT activity appeared 4-6 h after the appearance of the peak of DNA synthesis. After treating the cells with MNNG (10(-4) M), MMS (10(-3)-10(-4) M) and 4NQO (10(-5) M) for 90 min just after release of the block, the ADPRT activity was markedly stimulated. It was further demonstrated that the effects of MNNG/4NQO and cell cycle influence on the level of poly(ADP-ribose) synthesis appear to be additive. While concerning MMS, quite a different pattern of ADPRT stimulation in the cell cycle was demonstrated, i.e., the activity of ADPRT stimulation of 10(-3) M MMS was found to be completely dependent on the basal ADPRT activity. In the cells with the highest basal ADPRT activity 12 h after block release, the MMS-induced ADPRT stimulation could not be observed. It was suggested that more than one pathway might be present in ADPRT stimulation induced by DNA-damaging chemicals, and the cells synchronized in late G1 stage might be the most suitable for demonstrating poly(ADP-ribose) synthesis after DNA damage.  相似文献   

12.
A Penyige  G Vargha  J C Ensign  G Barabás 《Gene》1992,115(1-2):181-185
The role of ADP ribosylation of proteins in the physiological regulation of sporulation in Streptomyces griseus was studied. We report here that both the activity of NAD+: arginine ADP-ribosyltransferase (ADPRT) and the pattern of ADP-ribosylated proteins showed characteristic changes during the life cycle in S. griseus 2682. Analysis off ADP-ribosylated proteins revealed that in a nonsporulating mutant of the parental wild-type (wt) strain (Bld7 mutant), both the activity of ADPRT and the pattern of ADP-ribosylated proteins were different from those of the parental strain. Addition of 3-aminobenzamide (3AB), the most potent inhibitor of ADPRT, inhibited sporulation of S. griseus 2682 and the A-factor (AF)-induced sporulation of S. griseus Bld7, but in both cases the inhibitory effect of 3AB was strictly age-dependent. Using [alpha-32P]GTP, we have demonstrated the presence of GTP-binding proteins in purified cell membranes of S. griseus 2682 and S. griseus Bld7. The same GTP-binding proteins were observed in Bld7 and the wt. AF stimulated the basal GTPase activity of cell membranes of S. griseus 2682 in a concentration-dependent manner, suggesting that GTP-binding proteins might be involved in the AF-induced sporulation process.  相似文献   

13.
We have directly compared in resting human mononuclear leukocytes the DNA repair effects caused by ADP-ribosyl transferase (ADPRT) activity following DNA damage induction by gamma radiation, UV radiation, ethylene oxide (EO) and N-acetoxy-2-acetylaminofluorene (NA-AAF). The presence of inhibitors of ADPRT during the quantitation of unscheduled DNA synthesis (UDS) resulted in about a 2-fold increase of UDS when induced by gamma radiation, UV radiation or EO. The stimulation of UDS by EO, UV- or gamma-radiation in the presence of an ADPRT inhibitor was equally strong whether 1 mM or 10 mM hydroxyurea was used to suppress scheduled DNA synthesis. The level of NA-AAF induced UDS was not affected by inhibitors of ADPRT. In addition, direct estimation of ADPRT activity revealed that at doses giving maximal UDS, NA-AAF damage did not induce a measurable enzymatic activity whereas gamma-radiation, UV radiation and EO all showed a significant dose response increase. We have interpreted our data to mean that NA-AAF induced UDS estimates DNA repair relating mainly to DNA lesions that are recognized with difficulty, and hence, the rate of endonuclease-induced DNA strand break accumulation is not sufficient to allow a stimulation of ADPRT and affect the quantitation of UDS.  相似文献   

14.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

15.
Nicotinamide-adenine dinucleotide (NAD+) is the substrate used by cells in poly(ADP-ribose) synthesis. X-irradiation of log-phase Chinese hamster cells caused a rapid decrease in NAD+ levels which was linearly dependent on radiation dose. The activity of ADP-ribosyl transferase ( ADPRT ) also increased linearly with radiation dose. The decrease of NAD+ was slower, and the increase in ADPRT activity was less pronounced, in a radiation sensitive line, V79- AL162 /S-10. An inhibitor of ADPRT , m-aminobenzamide, largely prevented the depletion of cellular NAD+ and reduced the rate at which ADPRT activity disappeared during post-irradiation incubation. Post-irradiation treatment with hypertonic buffer or with medium containing D2O--which inhibit repair of radiation-induced potentially lethal damage--enhanced the depletion of NAD+ and prevented the reduction in ADPRT activity following irradiation. The characteristics of the effects of treatment with hypertonic buffer on NAD+ metabolism were qualitatively similar to the effects that such treatment has on radiation-induced cell killing. These results suggest that poly(ADP-ribose) synthesis after irradiation plays a role in the repair of potentially lethal damage.  相似文献   

16.
A novel ADP-ribosyltransferase (ADPRT) is reported from sera of both healthy human subjects (n = 25) and patients with colorectal tumors (n = 12) and breast cancer (n = 55). In sera of healthy controls (n = 25) the average ADPRT values were 250 +/- 56 picokatal/liter. ADPRT serum activities in metastatic cancer patients (n = 47) were three times higher (p less than 0.01) than in normal controls. A tumor origin of the serum ADPRT can be inferred from the statistical correlation (R = 0.74) between tumor and serum levels. The radiometric test procedure (CV 20-25%) is critically validated and kinetic properties of serum ADPRT have been studied, showing a competitive inhibition by nicotinamide, benzamide and 3-aminobenzamide. The kinetic parameters of serum ADPRT resemble those reported for nuclear ADPRT, thus indicating that serum ADPRT activity could be due to a nuclear enzyme released from the tumor cells.  相似文献   

17.
Pseudomonas aeruginosa is the most common cause of hospital-acquired pneumonia and a killer of immunocompromised patients. We and others have demonstrated that the type III secretion system (T3SS) effector protein ExoT plays a pivotal role in facilitating P. aeruginosa pathogenesis. ExoT possesses an N-terminal GTPase-activating protein (GAP) domain and a C-terminal ADP-ribosyltransferase (ADPRT) domain. Because it targets multiple non-overlapping cellular targets, ExoT performs several distinct virulence functions for P. aeruginosa, including induction of apoptosis in a variety of target host cells. Both the ADPRT and the GAP domain activities contribute to ExoT-induced apoptosis. The ADPRT domain of ExoT induces atypical anoikis by transforming an innocuous cellular protein, Crk, into a cytotoxin, which interferes with integrin survival signaling. However, the mechanism underlying the GAP-induced apoptosis remains unknown. In this study, we demonstrate that the GAP domain activity is both necessary and sufficient to induce mitochondrial (intrinsic) apoptosis. We show that intoxication with GAP domain results in: (i) JNK1/2 activation; (ii) substantial increases in the mitochondrial levels of activated pro-apoptotic proteins Bax and Bid, and to a lesser extent Bim; (iii) loss of mitochondrial membrane potential and cytochrome c release; and (iv) activation of initiator caspase-9 and executioner caspase-3. Further, GAP-induced apoptosis is partially mediated by JNK1/2, but it is completely dependent on caspase-9 activity. Together, the ADPRT and the GAP domains make ExoT into a highly versatile and potent cytotoxin, capable of inducing multiple forms of apoptosis in target host cells.  相似文献   

18.
Li CD  Zhang SY  Yuan B 《生理学报》2000,52(6):507-510
为探讨与学习记忆有关的一氧化氮(nitric oxide,NO)信号转导通路,本文用NO供体硝普钠(sodium nitroprusside,SNP)或同时给予ADP-核糖基转移酶(ADP-ribosyltransferase,ADPRT)抑制剂尼克酰胺(nicotinamide,NIC)侧脑室内流射,观察其对大鼠学习记忆行为的影响,并用高效液相色谱法测定脑内ADPRT活性。结果表明,SNP(0.  相似文献   

19.
pppA2'pA2'pA appears to be a potent natural noncompetitive inhibitor of poly (ADP-ribose) transferase activity in the histone dependent reaction of ADP-ribosylation with Ki=5 microM. Moreover, it is a noncompetitive inhibitor of the Mg2+ dependent reaction of autoADPRT-ribosylation with Ki=20 microM. The activity of ADPRT falls down abruptly both in the cytoplasm and nuclei of mouse L-cells treated with interferon. In contrast, the activities of 2',5'-oligo (A) polymerase and 2'-phosphodiesterase remain virtually unchanged after the treatment with ADPRT preparation. The regulation of ADPRT activity and active form of ADPRT by 2',5-oligoadenylates is presumed to be one of the factors responsible for inducing the antiviral and/or antiproliferative effects of interferon.  相似文献   

20.
Cellular differentiation in a number of eukaryotic systems is associated with changes in the number of DNA-strand breaks and involves the activity of adenosine diphosphoribosyl transferase (ADPRT). DNA-strand breaks are essential for activation of nuclear ADPRT, the activity of which is required for efficient religation of DNA-strand breaks. In this study we demonstrate the dynamic nature of DNA-strand breaks formed in the genome of differentiating avian skeletal muscle cells and quiescent human lymphocytes. Inhibition of ADPRT activity blocks DNA-strand ligation in both cell types and leads to the accumulation of a higher number of strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号