首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The presence of antibiotic- and biosurfactant-producing strains of fluorescent pseudomonads in a closed hydroponic system equipped with a slow filter was investigated. A total of 271 strains of pseudomonads were isolated before the filter, from the filter skin and from the effluent. Production of biosurfactants was determined using the drop-collapse method. The ability of the strains to inhibit the growth of the plant pathogens Pythium ultimum, Phytophthora cryptogea and Fusarium oxysporum was determined using dual culture plating. The influence of carbon sources on production was determined for selected strains, which also were identified to species level. Production of antibiotics or biosurfactants was observed to be a common trait among the fluorescent pseudomonads within the closed hydroponic system and it was affected by the filter. Pythium ultimum was the pathogen that was most sensitive to antibiotics produced by the fluorescent pseudomonads. The results indicated a strong influence of nutritional resources on antibiotic and biosurfactant production.  相似文献   

2.
Glycerol, a co-product of biodiesel production, was evaluated as carbon source for biosurfactant production. For this reason, seven non-pathogenic biosurfactant-producing Bacillus strains, isolated from the tank of chlorination at the Wastewater Treatment Plant at Federal University of Ceara, were screened. The production of biosurfactant was verified by determining the surface tension value, as well as the emulsifying capacity of the free-cell broth against soy oil, kerosene and N-hexadecane. Best results were achieved when using LAMI005 and LAMI009 strains, whose biosurfactant reduced the surface tension of the broth to 28.8?±?0.0 and 27.1?±?0.1?mN?m(-1), respectively. Additionally, at 72?h of cultivation, 441.06 and 267.56?mg?L(-1) of surfactin were produced by LAMI005 and LAMI009, respectively. The biosurfactants were capable of forming stable emulsions with various hydrocarbons, such as soy oil and kerosene. Analyses carried out with high performance liquid chromatography (HPLC) showed that the biosurfactant produced by Bacillus subtilis LAMI009 and LAMI005 was compatible with the commercially available surfactin standard. The values of minimum surface tension and the CMC of the produced biosurfactant indicated that it is feasible to produce biosurfactants from a residual and renewable and low-cost carbon source, such as glycerol.  相似文献   

3.
In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26–30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.  相似文献   

4.
Aims:  To isolate a biosurfactant-producing bacterial strain and to identify and characterize the chemical structure and properties of its biosurfactants.
Methods and Results:  The bacterium Rhodococcus wratislaviensis BN38, isolated from soil, was found to produce glycolipid biosurfactants when grown on 2% n -hexadecane. The glycolipids were isolated by chromatography on silica gel columns and their structures elucidated using a combination of multidimensional NMR and ESI-MS/MS techniques. The main product was identified as 2,3,4,2'-trehalose tetraester with molecular mass of 876 g mol−1. It was also noted that the biosurfactant was produced under nitrogen-limiting conditions and could not be synthesized from water-soluble substrates. The purified product showed extremely high surface-active properties.
Conclusions:  The glycolipid biosurfactant produced by the alkanothrophic strain R. wratislaviensis BN38 was characterized to be 2,3,4,2'-trehalose tetraester which exhibited high surfactant activities.
Significance and Impact of the Study:  Strain BN38 of R. wratislaviensis is a potential candidate for use in bioremediation applications or in biosurfactant exploration.  相似文献   

5.
[背景]由微生物产生的生物表面活性剂(biosurfactant,BS)具有低毒性、高效性、生物可降解性等多种特性,能在一定程度上缓解化学表面活性剂所造成的环境问题,因此筛选高产、安全的BS生产菌株备受研究者的关注.[目的]从泡菜水中筛选能代谢合成药食两用型BS的微生物菌株.[方法]运用滴崩法和排油圈法从传统发酵食品泡...  相似文献   

6.
Nine wells producing from six different reservoirs with salinities ranging from 2.1% to 15.9% were surveyed for presence of surface-active compounds and biosurfactant-producing microbes. Degenerate primers were designed to detect the presence of the surfactin/lichenysin (srfA3/licA3) gene involved in lipopeptide biosurfactant production in members of Bacillus subtilis/licheniformis group and the rhlR gene involved in regulation of rhamnolipid production in pseudomonads. Polymerase chain reaction amplification, cloning, and sequencing confirmed the presence of the srfA3/licA3 genes in brines collected from all nine wells. The presence of B. subtilis/licheniformis strains was confirmed by sequencing two other genes commonly used for taxonomic identification of bacteria, gyrA (gyrase A) and the 16S rRNA gene. Neither rhlR nor 16S rRNA gene related to pseudomonads was detected in any of the brines. Intrinsic levels of surface-active compounds in brines were low or not detected, but biosurfactant production could be stimulated by nutrient addition. Supplementation with a known biosurfactant-producing Bacillus strain together with nutrients increased biosurfactant production. The genetic potential to produce lipopeptide biosurfactants (e.g., srfA3/licA3 gene) is prevalent, and nutrient addition stimulated biosurfactant production in brines from diverse reservoirs, suggesting that a biostimulation approach for biosurfactant-mediated oil recovery may be technically feasible.  相似文献   

7.
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon alpha,omega-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.  相似文献   

8.
Rapid identification of biosurfactant-producing bacterial strains was achieved by assaying cell surface hydrophobicity which had a direct correlation with biosurfactant production by Serratia marcescens, Pseudomonas aeruginosa, Bacillus pumilus, B. laterosporus, Acineto- bacter calcoaceticus, Escherichia coli and Staphylococcus aureus. These properties namely, Hydrophobic Interaction Chromatography, Salt Aggregation Test, Bacterial Adherence To Hydrocarbon and adhesion to polystyrene by Replica Plate test, provide a simple means for identifying bacteria associated with the production of biosurfactants.  相似文献   

9.
A biosurfactant-producing strain, Bacillus licheniformis F2.2, was isolated from a fermented food in Thailand. The strain was capable of producing a new biosurfactant, BL1193, as well as two kinds of popular lipopeptide biosurfactants, plipastatin and surfactin. Mass spectrometry and FT-IR analysis indicated that BL1193 had a molecular mass of 1,193 Da with no peptide portion in the molecule. While plipastatin and surfactin were abundantly produced in a nutrient YPD medium, BL1193 was produced only in a synthetic DF medium containing no amino acids. According to an oil displacement activity test, the specific activity of BL1193 (6.53 kBS units/mg) is equivalent to that of surfactin (5.78-6.83 kBS units/mg).  相似文献   

10.
The present study is aimed at the naphthalene degradation with and without biosurfactant produced from Pseudomonas aeruginosa isolated from oil-contaminated soil. The present study was carried out to isolate the bacterial strains for the naphthalene degradation and also for biosurfactant production. The isolated strains were screened for their ability to degrade the naphthalene by the methods of optimum growth rate test and for the production of biosurfactants by cetyltrimethylammonium bromide, blood agar medium, and thin-layer chromatography. The present study also focused on the effect of biosurfactant for the degradation of naphthalene by isolate-1. Two bacterial strains were isolated and screened, one for biodegradation and another for biosurfactant production. The second organism was identified as Pseudomonas aeruginosa by 16S rRNA analysis. The purified biosurfactant reduces the surface tension of water and also forms stable emulsification with hexadecane and kerosene. The end product of naphthalene degradation was estimated as salicylic acid equivalent by spectrophotometric method. The results demonstrated that Pseudomonas aeruginosa has the potential to produce biosurfactant, which enhances the biodegradation of naphthalene. The study reflects the potential use of biosurfactants for an effective bioremediation in the management of contaminated soils.  相似文献   

11.
AIMS: To isolate a biosurfactant-producing bacterium and find new products within its culture. METHODS AND RESULTS: A biosurfactant-producing bacterium identified as Rhodococcus erythropolis (3C-9 strain) was isolated from seaside soil. When n-hexadecane was supplied as the sole carbon source, two types of biosurfactants (free fatty acids and glycolipids) were detected in the supernatant of the bacterial culture by use of thin layer chromatography (TLC). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the former consisted of at least 12 free fatty acids of chain lengths from C(9) to C(22); and the latter contained 2 kinds of glycolipids (a glucolipid and a trehalose lipid), which were detected by use of TLC, as well as GC-MS. The hydrophobic moieties of both glycolipids consisted of seven types of straight-chain fatty acids of varying compositions, with chain lengths ranging from C(10) to C(18). It was also noted that biosurfactants of strain 3C-9 were produced in a manner that was growth-related and cannot be synthesized from water-soluble substrates. The effects to enhance the solubility of polycyclic aromatic hydrocarbons and the degradation rate of hexadecane were also tested. CONCLUSIONS: The biosurfactants produced by strain 3C-9 of R. erythropolis included two kinds of glycolipids, as well as free fatty acids. These biosurfactants were notably different from those of previously reported Rhodococcus species, both in terms of their structure and chemical composition. SIGNIFICANCE AND IMPACT OF THE STUDY: Strain 3C-9 of R. erythropolis is a competitive candidate for use in oil spill cleanup operations, or in new biosurfactant exploration. The findings in this report show that Rhodococcus is a natural reservoir of new biosurfactants.  相似文献   

12.
Potato late blight disease caused by the zoospore-producing pathogen Phytophthora infestans (Mont.) de Bary is one of the most destructive plant diseases world-wide and currently its management mainly relies on the frequent use of fungicides. This study investigated the possibility of reducing potato late blight by biocontrol with the biosurfactant-producing strain Pseudomonas koreensis 2.74. Significant disease reduction with the biosurfactant-producing strain and its biosurfactant was observed in greenhouse trials using a detached-leaf assay. A direct effect of the biosurfactant on zoospores of P. infestans was also observed, whereas the biosurfactant only caused a minor reduction in mycelial growth rate and had no effect on the rate of sporangia production in pure culture.  相似文献   

13.
Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m?1 and have a critical micelle concentration (CMC) of 100 mg L?1. Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.  相似文献   

14.
Biosurfactant production may be an economic approach to improving oil recovery. To obtain candidates most suitable for oil recovery, 207 strains, mostly belonging to the genus Bacillus, were tested for growth and biosurfactant production in medium with 5% NaCl under aerobic and anaerobic conditions. All strains grew aerobically with 5% NaCl, and 147 strains produced a biosurfactant. Thirty-five strains grew anaerobically with 5% NaCl, and two produced a biosurfactant. In order to relate structural differences to activity, eight lipopeptide biosurfactants with different specific activities produced by various Bacillus species were purified by a new protocol. The amino acid compositions of the eight lipopeptides were the same (Glu/Gln:Asp/Asn:Val:Leu, 1:1:1:4), but the fatty acid compositions differed. Multiple regression analysis showed that the specific biosurfactant activity depended on the ratios of both iso to normal even-numbered fatty acids and anteiso to iso odd-numbered fatty acids. A multiple regression model accurately predicted the specific biosurfactant activities of four newly purified biosurfactants (r2= 0.91). The fatty acid composition of the biosurfactant produced by Bacillus subtilis subsp. subtilis strain T89-42 was altered by the addition of branched-chain amino acids to the growth medium. The specific activities of biosurfactants produced in cultures with different amino acid additions were accurately predicted by the multiple regression model derived from the fatty acid compositions (r2= 0.95). Our work shows that many strains of Bacillus mojavensis and Bacillus subtilis produce biosurfactants and that the fatty acid composition is important for biosurfactant activity.  相似文献   

15.
Biosurfactant production of eight Streptococcus thermophilus strains, isolated from heat exchanger plates in the downstream side of the regenerator section of pasteurizers in the dairy industry has been measured using axisymmetric drop shape analysis by profile (ADSA-P). Strains were grown in M17 broth with either lactose, saccharose or glucose added. After harvesting, cells were suspended in water or in 10 mm potassium phosphate buffer, pH 7.0, and suspension droplets were put on a piece of FEP-Teflon. Changes in droplet profile were analysed by ADSA-P to yield the surface tension decrease due to biosurfactant production as a function of time. Surface tension decreases larger than 8 mJ·m–2 were taken as indicative of biosurfactant production. Only five strains produced biosurfactants in water, solely when saccharose was added to the growth medium. In buffer, all strains produced biosurfactants and production was generally greater than in water. Also, most strains suspended in buffer produced maximally when saccharose was added to the growth medium, whereas one strain produced maximally in buffer upon the addition of glucose. Four strains suspended in buffer produced biosurfactants when glucose was added and only two strains when lactose was added. The possible role of these biosurfactants as anti-adhesives in the dairy industry and for the survival of these strains in natural systems is discussed.Correspondence to: H. J. Busscher  相似文献   

16.
AIMS: To isolate and characterize biosurfactants produced by a thermotolerant yeast isolated in Thailand. MATERIALS AND RESULTS: Yeast strains isolated from plant material in Thailand were first screened for the ability to produce lipase and biosurfactant. A strain Y12, identified as Candida ishiwadae by physiological tests, survived at 45 degrees C and produced relatively large amounts of biosurfactants. From the culture filtrate of this strain, two glycolipid biosurfactants, a and b, were purified by solvent fractionation, silica gel and ODS column chromatographies. Compounds a and b were determined to be monoacylglycerols; 1-linoleylglycerol and 1-oleylglycerol, respectively. Both compounds exhibited higher surfactant activities tested by the drop collapse test than several artificial surfactants such as sodium dodecyl sulphate. CONCLUSIONS: Glycolipid biosurfactants produced by a thermotolerant yeast, C. ishiwadae were characterized to be monoacylglycerols which exhibited high surfactant activities. SIGNIFICANCE AND IMPACT OF THE STUDY: A thermotolerant yeast strain, C. ishiwadae, could be a potential candidate for producing monoacylglycerols which are useful in industrial applications.  相似文献   

17.
Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.  相似文献   

18.
AIMS: Our goal is to compare the efficiency of utilization of pyrene as the sole source of carbon for growth and energy by two nonactinomycetous groups of bacteria viz., Bacillus subtilis DM-04 and Pseudomonas aeruginosa mucoid (M) and nonmucoid (NM) strains, isolated from a petroleum-contaminated soil sample of north-east India. METHODS AND RESULTS: Bacillus subtilis DM-04 and P. aeruginosa M and NM bacterial strains were capable of secreting biosurfactant in the culture medium while growing on pyrene and their pyrene utilizing efficiency was demonstrated by correlating the bacterial growth in the presence of pyrene as the sole source of carbon along with a concomitant decrease in pyrene content from the culture medium with respect to time. The biosurfactant secreted by the respective bacterial strains enhanced the apparent solubility of pyrene by factors of 5-7 and influenced the bacterial cell surface hydrophobicity resulting in higher uptake and utilization of pyrene by bacteria. The growth of B. subtilis DM-04 and P. aeruginosa M and NM strains at the expense of pyrene after 96 h showed an assimilation of about 48.0 +/- 1.1% (mean +/- SD) and 32.0 +/- 0.6% (mean +/- SD) of pyrene carbon, respectively, showing differences in metabolism of pyrene by these bacterial strains. CONCLUSIONS: Bacillus subtilis DM-04 strain exhibited higher utilization and cellular assimilation of pyrene compared with P. aeruginosa M and NM strains. Further, the biosurfactants produced by the bacteria under study are capable of enhancing the solubility of pyrene in aqueous media and can influence the cell surface hydrophobicity of the biosurfactant-producing strains that results in a higher uptake of pyrene. SIGNIFICANCE AND IMPACT OF THE STUDY: It may be suggested that the bacteria used in this study are suitable candidates for practical field application for effective in situ bioremediation of pyrene-contaminated sites.  相似文献   

19.
Quantification of the biosurfactants produced by a variety of microorganisms is a time taking and difficult task due to the lack of rapid, efficient and accurate methods. This work presents a simple turbidometric method for quantification of crude biosurfactants based on their property to become insoluble at low pH values. Biosurfactants obtained from a Bacillus sp. using different carbon substrates showed a good linear correlation (R(2)>0.99) between biosurfactant concentrations and turbidity in the range of 1 to 10 g L(-1) of crude biosurfactants. The substrate specific equations (SSE) and generalized equations (GE) developed in this work effectively predicted the amount of crude biosurfactant produced in different sets of fermentation experiments validating the method. A similar linear correlation was also observed with biosurfactants obtained from two other strains, Bacillus circulans and Pseudomonas sp. This simple method may prove to be effective in fast, accurate and inexpensive quantification of crude biosurfactants produced by diverse bacteria.  相似文献   

20.
The biodegradation of hexadecane by five biosurfactant-producing bacterial strains (Pseudomonas aeruginosa UG2, Acinetobacter calcoaceticus RAG1, Rhodococcus erythropolis DSM 43066, R. erythropolis ATCC 19558, and strain BCG112) was determined in the presence and absence of exogenously added biosurfactants. The degradation of hexadecane by P. aeruginosa was stimulated only by the rhamnolipid biosurfactant produced by the same organism. This rhamnolipid did not stimulate the biodegradation of hexadecane by the four other strains to the same extent, nor was degradation of hexadecane by these strains stimulated by addition of their own biosurfactants. This suggests that P. aeruginosa has a mode of hexadecane uptake different from those of the other organisms. Rhamnolipid also enhanced the rate of epoxidation of the aliphatic hydrocarbon α,ω-tetradecadiene by a cell suspension of P. aeruginosa. Furthermore, the uptake of the hydrophobic probe 1-naphthylphenylamine by cells of P. aeruginosa was enhanced by rhamnolipid, as indicated by stopped-flow fluorescence experiments. Rhamnolipid did not stimulate the uptake rate of this probe in de-energized cells. These results indicate that an energy-dependent system is present in P. aeruginosa strain UG2 that mediates fast uptake of hydrophobic compounds in the presence of rhamnolipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号