首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 10 years after its initial discovery, netrin-1 - the first described chimioattractive molecule controlling the guidance of the commissural axons - has recently known a unsuspected wave of interest because of its implication in the development of the nervous system but also, more recently, fot its role in angiogenesis and tumorigenesis. Because, of a series of recent publications on netrin-1 signaling, we propose here to describe the recent insight in netrin-1 signaling via its main receptor DCC (deleted in colorectal cancer), and the recent discovery that netrin controls the assymetric distribution of beta-actin in the growth cone. Thus, it seems that netrin-1, but also the neurotrophic factor BDNF, controls acute growth cone responses such as collapse and turning by the regulation of localized protein translation, such as beta-actin. This process involves both transport of beta-actin mRNA, bound to Vg1RBP, to specific locations, and mRNA translation upon stimulation by local activation of the translation initiation regulator eIF-4E-binding protein 1. Indeed, Netrin-1 induces the movement of Vg1RBP granules into filopodia, and triggers a polarized increase in beta-actin translation on the near side of the growth cone before growth cone turning. The binding of BDNF to its receptor Trk has a similar effect for growth cone attraction, althought it is differentially regulated. Thus, this asymetrically synthesized beta-actin may direct actin polymerization and consequently the migration of the growth cone toward the cue.  相似文献   

2.
Rho GTPases in growth cone guidance   总被引:24,自引:0,他引:24  
It is now well established that the small GTPases of the Rho family--Rac, Cdc42 and Rho--regulate growth cone morphology. Less clear is their role in guiding the growth cone. Do they act permissively, providing the dynamic actin structures needed for guidance? Or do they act instructively, transducing specific guidance signals? Recent studies have provided the first strong evidence for an instructive role: extracellular guidance cues can modulate Rho GTPase activities in vitro, and Rho GTPase activators function in growth cone guidance in vivo. The pathways linking Rho GTPases and the actin cytoskeleton are also rapidly coming into view, revealing further points of regulation by extracellular guidance cues. The growth cone is therefore guided by signals transduced both via and independently of Rho GTPases.  相似文献   

3.
4.
Previous studies implicated the anti-inflammatory potential of the adenosine 2B receptor (A2BAR). A2BAR activation is achieved through adenosine, but this is limited by its very short t(1/2). To further define alternative adenosine signaling, we examined the role of netrin-1 during acute inflammatory peritonitis. In this article, we report that animals with endogenous repression of netrin-1 (Ntn1(+/-)) demonstrated increased cell count, increased peritoneal cytokine concentration, and pronounced histological changes compared with controls in a model of zymosan A peritonitis. Exogenous netrin-1 significantly decreased i.p. inflammatory changes. This effect was not present in animals with deletion of A2BAR (A2BAR(-/-)). A2BAR(-/-) animals demonstrated no change in cell count, i.p. cytokine concentration, or histology in response to netrin-1 injection. These data strengthen the role of netrin-1 as an immunomodulatory protein exerting its function in dependence of the A2BAR and further define alternative adenosine receptor signaling.  相似文献   

5.
Although a growing body of evidence supports that Wnt-Frizzled signaling controls axon guidance from vertebrates to worms, whether and how this is mediated by planar cell polarity (PCP) signaling remain elusive. We show here that the core PCP components are required for Wnt5a-stimulated outgrowth and anterior-posterior guidance of commissural axons. Dishevelled1 can inhibit PCP signaling by increasing hyperphosphorylation of Frizzled3 and preventing its internalization. Vangl2 antagonizes that by reducing Frizzled3 phosphorylation and promotes its internalization. In commissural axon growth cones, Vangl2 is predominantly localized on the plasma membrane and is highly enriched on the tips of the filopodia as well as in patches of membrane where new filopodia emerge. Taken together, we propose that the antagonistic functions of Vangl2 and Dvl1 (over Frizzled3 hyperphosphorylation and endocytosis) allow sharpening of PCP signaling locally on the tips of the filopodia to sense directional cues, Wnts, eventually causing turning of growth cones.  相似文献   

6.
During development, dorsal root ganglion (DRG) neurons extend their axons toward the dorsolateral part of the spinal cord and enter the spinal cord through the dorsal root entry zone (DREZ). After entering the spinal cord, these axons project into the dorsal mantle layer after a ‘waiting period’ of a few days. We revealed that the diffusible axonal guidance molecule netrin-1 is a chemorepellent for developing DRG axons. When DRG axons orient themselves toward the DREZ, netrin-1 proteins derived from the ventral spinal cord prevent DRG axons from projecting aberrantly toward the ventral spinal cord and help them to project correctly toward the DREZ. In addition to the ventrally derived netrin-1, the dorsal spinal cord cells adjacent to the DREZ transiently express netrin-1 proteins during the waiting period. This dorsally derived netrin-1 contributes to the correct guidance of DRG axons to prevent them from invading the dorsal spinal cord. In general, there is a complete lack of sensory axonal regeneration after a spinal cord injury, because the dorsal column lesion exerts inhibitory activities toward regenerating axons. Netrin-1 is a novel candidate for a major inhibitor of sensory axonal regeneration in the spinal cord; because its expression level stays unchanged in the lesion site following injury, and adult DRG neurons respond to netrin-1-induced axon repulsion. Although further studies are required to show the involvement of netrin-1 in preventing the regeneration of sensory axons in CNS injury, the manipulation of netrin-1-induced repulsion in the CNS lesion site may be a potent approach for the treatment of human spinal injuries.  相似文献   

7.
Regulation of growth cone actin filaments by guidance cues   总被引:16,自引:0,他引:16  
The motile behaviors of growth cones at the ends of elongating axons determine pathways of axonal connections in developing nervous systems. Growth cones express receptors for molecular guidance cues in the local environment, and receptor-guidance cue binding initiates cytoplasmic signaling that regulates the cytoskeleton to control growth cone advance, turning, and branching behaviors. The dynamic actin filaments of growth cones are frequently targets of this regulatory signaling. Rho GTPases are key mediators of signaling by guidance cues, although much remains to be learned about how growth cone responses are orchestrated by Rho GTPase signaling to change the dynamics of polymerization, transport, and disassembly of actin filaments. Binding of neurotrophins to Trk and p75 receptors on growth cones triggers changes in actin filament dynamics to regulate several aspects of growth cone behaviors. Activation of Trk receptors mediates local accumulation of actin filaments, while neurotrophin binding to p75 triggers local decrease in RhoA signaling that promotes lengthening of filopodia. Semaphorin IIIA and ephrin-A2 are guidance cues that trigger avoidance or repulsion of certain growth cones, and in vitro responses to these proteins include growth cone collapse. Dynamic changes in the activities of Rho GTPases appear to mediate responses to these cues, although it remains unclear what the changes are in actin filament distribution and dynamic reorganization that result in growth cone collapse. Growth cones in vivo simultaneously encounter positive and negative guidance cues, and thus, growth cone behaviors during axonal pathfinding reflect the complex integration of multiple signaling activities.  相似文献   

8.
Electrical activity modulates growth cone guidance by diffusible factors   总被引:9,自引:0,他引:9  
Ming G  Henley J  Tessier-Lavigne M  Song H  Poo M 《Neuron》2001,29(2):441-452
Brief periods of electrical stimulation of cultured Xenopus spinal neurons resulted in a marked alteration in the turning responses of the growth cone induced by gradients of attractive or repulsive guidance cues. Netrin-1-induced attraction was enhanced, and the repulsion induced by myelin-associated glycoprotein (MAG) or myelin membrane fragments was converted to attraction. The effect required the presence of extracellular Ca(2+) during electrical stimulation and appeared to be mediated by an elevation of both cytoplasmic Ca(2+) and cAMP. Thus, electrical activity may influence the axonal path finding of developing neurons, and intermittent electrical stimulation may be effective in promoting nerve regeneration after injury.  相似文献   

9.
The second messenger cyclic adenosine monophosphate (cAMP) plays a pivotal role in axonal growth and guidance, but its downstream mechanisms remain elusive. In this study, we report that type II protein kinase A (PKA) is highly enriched in growth cone filopodia, and this spatial localization enables the coupling of cAMP signaling to its specific effectors to regulate guidance responses. Disrupting the localization of PKA to filopodia impairs cAMP-mediated growth cone attraction and prevents the switching of repulsive responses to attraction by elevated cAMP. Our data further show that PKA targets protein phosphatase-1 (PP1) through the phosphorylation of a regulatory protein inhibitor-1 (I-1) to promote growth cone attraction. Finally, we find that I-1 and PP1 mediate growth cone repulsion induced by myelin-associated glycoprotein. These findings demonstrate that the spatial localization of type II PKA to growth cone filopodia plays an important role in the regulation of growth cone motility and guidance by cAMP.  相似文献   

10.
Expression of rat TrkA in Xenopus spinal neurons confers responsiveness of these neurons to nerve growth factor (NGF) in assays of neuronal survival and growth cone chemotropism. Mutational analysis indicates that coactivation of phospholipase C-gamma (PLC-gamma) and phosphoinositide 3-kinase (PI3-kinase) by specific cytoplasmic domains of TrkA is essential for triggering chemoattraction of the growth cone in an NGF gradient. Uniform exposure of TrkA-expressing neurons to NGF resulted in a cross-desensitization of turning responses induced by a gradient of netrin-1, brain-derived neurotrophic factor (BDNF), or myelin-associated glycoprotein (MAG) but not by a gradient of collapsin-1/semaphorin III/D or neurotrophin-3 (NT-3). These results, together with the effects of pharmacological inhibitors, support the notion that there are common cytosolic signaling pathways for two separate groups of guidance cues, one of which requires coactivation of PLC-gamma and PI3-kinase pathways.  相似文献   

11.
Signal transduction underlying growth cone guidance by diffusible factors.   总被引:23,自引:0,他引:23  
Many diffusible axon guidance cues and their receptors have been identified recently. These cues are often found to be bifunctional, acting as attractants or repellents under different circumstances. Studies of cytoplasmic signaling mechanisms have led to the notion that the response of a growth cone to a particular guidance cue depends on the internal state of the neuron, which, in turn, is under the influence of other coincident signals received by the neuron. Furthermore, many diffusible guidance cues appear to share common cytoplasmic signaling pathways.  相似文献   

12.
During development, neuronal growth cones encounter a variety of guidance cues while mediating axon path finding, target recognition and synapse formation. It is clear that repulsive guidance mechanisms play an essential role in these processes. The semaphorin gene family, which is conserved from invertebrates to mammals, includes members that mediate repulsive guidance. Molecular and cellular analysis of this gene family is providing insight into how inhibitory cues function during neurodevelopment.  相似文献   

13.
Klein R 《Cell》2005,121(1):4-6
Cells communicate with other cells via (trans) interaction between membrane-linked ephrins and Eph receptors. In this issue of Cell, Pfaff and colleagues (Marquardt et al., 2005) demonstrate that coexpressed ephrin-As and Ephs do not interact in cis but rather segregate into separate membrane domains, from which they signal opposing effects during motor axon guidance.  相似文献   

14.
Guan CB  Xu HT  Jin M  Yuan XB  Poo MM 《Cell》2007,129(2):385-395
Neuronal migration and growth-cone extension are both guided by extracellular factors in the developing brain, but whether these two forms of guidance are mechanistically linked is unclear. Application of a Slit-2 gradient in front of the leading process of cultured cerebellar granule cells led to the collapse of the growth cone and the reversal of neuronal migration, an event preceded by a propagating Ca(2+) wave from the growth cone to the soma. The Ca(2+) wave was required for the Slit-2 effect and was sufficient by itself to induce the reversal of migration. The Slit-2-induced reversal of migration required active RhoA, which was accumulated at the front of the migrating neuron, and this polarized RhoA distribution was reversed during the migration reversal induced by either the Slit-2 gradient or the Ca(2+) wave. Thus, long-range Ca(2+) signaling coordinates the Slit-2-induced changes in motility at two distant parts of migrating neurons by regulating RhoA distribution.  相似文献   

15.
Transforming growth factor-beta (TGF-β) signaling positively contributes to the regulation of tumor metastasis. However, the underlying molecular mechanisms are less well defined. We here show that Fyn, a member of Src family tyrosine kinases, plays a critical role in mediating TGF-β1-induced down-regulation of E-cadherin in human A549 lung cancer cells. Blockade of Fyn with siRNA knockdown or ligand-binding defective mutant significantly lowered the ability of TGF-β1 to repress E-cadherin expression. Furthermore, our results demonstrated that Fyn facilitates TGF-β1-mediated suppression of E-cadherin through p38 kinase-dependent induction of Snail. Collectively, our findings identify a Fyn-p38-Snail cascade as a new signaling pathway mediating oncogenic TGF-β function.  相似文献   

16.
We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.  相似文献   

17.
Netrin-1 acts as a survival factor via its receptors UNC5H and DCC   总被引:12,自引:0,他引:12  
The membrane receptors DCC and UNC5H have been shown to be crucial for axon guidance and neuronal migration by acting as receptors for netrin-1. DCC has also been proposed as a dependence receptor inducing apoptosis in cells that are beyond netrin-1 availability. Here we show that the netrin-1 receptors UNC5H (UNC5H1, UNC5H2, UNC5H3) also act as dependence receptors. UNC5H receptors induce apoptosis, but this effect is blocked in the presence of netrin-1. Moreover, we demonstrate that UNC5H receptors are cleaved in vitro by caspase in their intracellular domains. This cleavage may lead to the exposure of a fragment encompassing a death domain required for cell death induction in vivo. Finally, we present evidence that during development of the nervous system, the presence of netrin-1 is crucial to maintain survival of UNC5H- and DCC-expressing neurons, especially in the ventricular zone of the brainstem. Altogether, these results argue for a role of netrin-1 during the development of the nervous system, not only as a guidance cue but as a survival factor via its receptors DCC and UNC5H.  相似文献   

18.
Neuronal growth cones migrate directionally under the control of axon guidance molecules, thereby forming synapses in the developing brain. The signal transduction system by which a growth cone detects surrounding guidance molecules, analyzes the detected signals, and then determines the overall behavior remains undetermined. In this study, we describe a novel stochastic model of this behavior that utilizes multiple sensors on filopodia to respond to guidance molecules. Overall growth cone behavior is determined by using only the concentration gradients of guidance molecules in the immediate vicinity of each sensor. The detected signal at each sensor, which is treated as a vector quantity, is sent to the growth cone center and then integrated to determine axonal growth in the next step by means of a simple vector operation. We compared the results of computer simulations of axonal growth with observations of actual axonal growth from co-culture experiments using olfactory bulb and septum. The probabilistic distributions of axonal growth generated by the computer simulation were consistent with those obtained from the culture experiments, indicating that our model accurately simulates growth cone behavior. We believe that this model will be useful for elucidating the as yet unknown mechanisms responsible for axonal growth in vivo.  相似文献   

19.
Laminin is well known to promote neuronal adhesion and axonal growth, but recent experiments suggest laminin has a wider role in guiding axons, both in development and regeneration. In vitro experiments demonstrate that laminin can alter the rate and direction of axonal growth, even when growth cone contact with laminin is transient. Investigations focused on a single neuronal type, such as retinal ganglion cells (RGCs), strongly implicate laminin as an important guidance molecule in development and suggest the involvement of integrins. Integrins are receptors for laminin, and neurons express multiple types of integrins that bind laminin. Morphologically, integrins cluster in point contacts, specialized regions of the growth cone that may coordinately regulate adhesion and motility. Recent evidence suggests that the structure and regulation of point contacts may differ from that of their nonneuronal counterparts, focal contacts. In part, this may be because the interaction of the cytoplasmic domain of integrin with the cytoskeleton is different in point contacts and focal contacts. Mutational studies where the cytoplasmic domain is truncated or altered are leading to a better understanding of the role of the α and β subunit in regulating integrin clustering and binding to the cytoskeleton. In addition, whereas integrins may regulate motility through direct physical linkages to the growth cone cytoskeleton, an equally important role is their ability to elicit signaling, both through protein tyrosine phosphorylation and modulating calcium levels. Through such mechanisms integrins likely regulate the dynamic attachment and detachment of the growth cone as it moves on laminin substrates.  相似文献   

20.

Background

Opioids are the cornerstone of treatment for moderate to severe pain, but chronic use leads to maladaptations that include: tolerance, dependence and opioid-induced hyperalgesia (OIH). These responses limit the utility of opioids, as well as our ability to control chronic pain. Despite decades of research, we have no therapies or proven strategies to overcome this problem. However, murine haplotype based computational genetic mapping and a SNP data base generated from analysis of whole-genome sequence data (whole-genome HBCGM), provides a hypothesis-free method for discovering novel genes affecting opioid maladaptive responses.

Results

Whole genome-HBCGM was used to analyze phenotypic data on morphine-induced tolerance, dependence and hyperalgesia obtained from 23 inbred strains. The robustness of the genetic mapping results was analyzed using strain subsets. In addition, the results of analyzing all of the opioid-related traits together were examined. To characterize the functional role of the leading candidate gene, we analyzed transgenic animals, mRNA and protein expression in behaviorally divergent mouse strains, and immunohistochemistry in spinal cord tissue. Our mapping procedure identified the allelic pattern within the netrin-1 receptor gene (Dcc) as most robustly associated with OIH, and it was also strongly associated with the combination of the other maladaptive opioid traits analyzed. Adult mice heterozygous for the Dcc gene had significantly less tendency to develop OIH, become tolerant or show evidence of dependence after chronic exposure to morphine. The difference in opiate responses was shown not to be due to basal or morphine-stimulated differences in the level of Dcc expression in spinal cord tissue, and was not associated with nociceptive neurochemical or anatomical alterations in the spinal cord or dorsal root ganglia in adult animals.

Conclusions

Whole-genome HBCGM is a powerful tool for identifying genes affecting biomedical traits such as opioid maladaptations. We demonstrate that Dcc affects tolerance, dependence and OIH after chronic opioid exposure, though not through simple differences in expression in the adult spinal cord.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-345) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号