首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
Cell fractions enriched in endoplasmic reticulum, tonoplast, plasma membrane, and cell walls were isolated from roots of barley (Hordeum vulgare L. cv CM 72) and the effect of NaCl on polypeptide levels was examined by two-dimensional (2D) polyacrylamide gel electrophoresis. The distribution of membranes on continuous sucrose gradients was not significantly affected by growing seedlings in the presence of NaCl; step gradients were used to isolate comparable membrane fractions from roots of control and salt-grown plants. The membrane and cell wall fractions each had distinctive polypeptide patterns on 2D gels. Silver-stained gels showed that salt stress caused increases or decreases in a number of polypeptides, but no unique polypeptides were induced by salt. The most striking change was an increase in protease resistant polypeptides with isoelectric points of 6.3 and 6.5 and molecular mass of 26 and 27 kilodaltons in the endoplasmic reticulum and tonoplast fractions. Fluorographs of 2D gels of the tonoplast, plasma membrane, and cell wall fractions isolated from roots of intact plants labeled with [35S]methionine in vivo also showed that salt induced changes in the synthesis of a number of polypeptides. There was no obvious candidate for an integral membrane polypeptide that might correspond to a salt-induced sodium-proton anti-porter in the tonoplast membrane.  相似文献   

3.
Brassica napus suspension-cultured cells can be hardened to a lethal temperature for 50% of the sample of −20°C in eight days at room temperature with abscisic acid. During the induction of freezing tolerance, changes were observed in the electrophoretic pattern of [35S]methionine labeled polypeptides. In hardening cells, a 20 kilodalton polypeptide was induced on day 2 and its level increased during hardening. The induction of freezing tolerance with nonmaximal hardening regimens also resulted in increases in the 20 kilodalton polypeptide. The 20 kilodalton polypeptide was associated with a membrane fraction enriched in endoplasmic reticulum and was resolved as a single spot by two-dimensional electrophoresis. In vitro translation of mRNA indicate alteration of gene expression during abscisic acid induction of freezing tolerance. The new mRNA encodes a 20 kilodalton polypeptide associated with increased freezing tolerance induced by either abscisic acid or high sucrose. A 20 kilodalton polypeptide was also translated by mRNA isolated from cold-hardened B. napus plants.  相似文献   

4.
Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the membrane fractions were incubated with γ-[32P]ATP, phosphorylation occurred almost exclusively in the plasma membrane fraction. Phosphorylation of a band at 38 kilodaltons increased as the concentration of Mg2+ was decreased from millimolar to micromolar levels. Phosphorylation of bands at 125, 86, 58, 46, and 28 kilodaltons required millimolar Mg2+ concentrations and was greatly enhanced by Ca2+. When roots of intact plants were labeled with [32P]orthophosphate, polypeptides at approximately 135, 116, 90, 46 to 53, 32, 28, and 19 kilodaltons were labeled in the plasma membrane fraction and polypeptides at approximately 73, 66, and 48 kilodaltons were labeled in the tonoplast fraction. Treatment of the roots of intact plants with 150 millimolar NaCl resulted in increased phosphorylation of some polypeptides while treatment with 100 mm NaCl had no effect.  相似文献   

5.
Tonoplast enriched membrane vesicle fractions were isolated from unadapted and NaCl (428 millimolar) adapted tobacco cells (Nicotiana tabacum L. var Wisconsin 38). Polypeptides from the tonoplast enriched vesicle fractions were separated by SDS-PAGE and analyzed by Western blots using polyclonal antibodies to the 70 kilodalton subunit of the red beet tonoplast H+-ATPase. These antibodies cross-reacted exclusively to a tobacco polypeptide of an apparent molecular weight of 69 kilodaltons. The antibodies inhibited ATP-dependent, NO3 sensitive H+ transport into vesicles in tonoplast enriched membrane fractions from both unadapted and NaCl adapted cells. The relative H+ transport capacity per unit of 69 kilodalton subunit of the tonoplast ATPase of vesicles from NaCl adapted cells was fourfold greater than that observed for vesicles from unadapted cells. The increase in specific H+ transport capacity after adaptation was also observed for ATP hydrolysis.  相似文献   

6.
Nitrate-induced polypeptides in membranes from corn seedling roots   总被引:2,自引:0,他引:2  
The polypeptide composition of the membranes from corn (Zeamays L.) seedling roots upon nitrate induction was determinedby two-dimensional gel electrophoresis and silver-staining.The synthesis of five polypeptides (49, 48, 35, 33, and 32 kDa)in the tono-plast fraction and four polypeptides (50, 49, 38,and 33 kDa) in the plasma membrane fraction was induced by both2.5 mM Ca(NO3)2 and 5 mM KNO3. Extensive washing of the membraneswith salt and NaOH demonstrated that three induced polypeptides(49, 48, and 35 kDa) in the tonoplast fraction and two inducedpolypeptides (49 and 33 kDa) in the plasma membrane fractionwere integral proteins. After incubation of seedlings in N-freemedium for 4 d, the 49 and 32 kDa polypeptides in the tonoplastfraction had disappeared. By the sixth day in N-free medium,the 35 kDa polypeptide had disappeared from the tonoplast fraction.The 50 kDa polypeptide of the plasma membrane fraction was nolonger detectable in seedlings incubated for 6 d in N-free medium.The size of the spots corresponding to the 33 kDa polypeptidesof both membrane fractions and to the 49 kDa polypeptide ofthe plasma membrane fraction was reduced following incubationof seedlings in N-free medium. The changes in nitrate-inducedpolypeptides in both membrane fractions following transfer toN-free medium correlated with a reduced capacity to take upnitrate in the treated seedlings. The results support the conclusionthat the nitrate-induced polypeptides may be involved in nitratetransport across the tonoplast and plasma membrane. Key words: Nitrate transport, induction, membrane peptides  相似文献   

7.
Cellular and extracellular protein profiles from Bromus inermis Leyss. cv Manchar cell suspension cultures cold hardened by low temperature and abscisic acid (ABA) treatment were analyzed by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellular proteins (25, 165, 190, and 200 kilodaltons) increased by low temperature growth and cellular proteins (20, 25, 28, 30, 32, 37, 40, 45, 200 kilodaltons) increased by exogenous ABA treatment were identified. Low temperature treatment inhibited the synthesis of a 22 kilodalton protein and ABA treatment resulted in the synthesis of two extracellular proteins (17 and 21 kilodaltons). Low temperature and ABA-induced hardening conditions increased or induced a 25 and a 200 kilodalton protein. The 25 and a 30 kilodalton protein previously shown to be enriched by ABA-induced hardening conditions at both 3 and 23°C temperatures co-fractionated with the crude membrane fraction (30,000g sediment). The 200 kilodalton protein was detected in the 30,000g supernatant. Two-dimensional analysis of the crude membrane fraction resolved the 30 kilodalton protein band into a major polypeptide with an apparent isoelectric point of 6.85.  相似文献   

8.
Polyadenylated RNA was isolated from leaves and seeds of a C3 plant (Triticum aestivum L. cv Cheyenne, CI 8885) and from a C4 plant (Zea mays L. cv Golden bantam). Each polyadenylated RNA preparation was translated in vitro with micrococcal nuclease-treated reticulocyte lysate. When the in vitro translation products were probed with antibodies to pyruvate orthophosphate dikinase (PPDK) (EC 2.7.9.1), two sizes of polypeptide were identified. A 110 kilodalton polypeptide was found in the in vitro translation products of mRNA isolated exclusively from leaves of both wheat and maize. A 94 kilodalton polypeptide, similar to the PPDK polypeptide which can be extracted after in vivo synthesis in maize and wheat leaves and seeds, was found in the in vitro translation products obtained from wheat seeds and maize kernels.

These results indicate that the mRNAs for PPDK polypeptides are organ-specific in both a C4 and a C3 plant. Hague et al. (1983 Nucleic Acids Res 11: 4853-4865) proposed that the larger size polypeptide of the in vitro translation polypeptide from maize leaf RNA contains a `transit sequence' which permits entry into the chloroplasts of a polypeptide synthesized in vivo in maize leaf cell cytoplasm. It appears that in wheat leaves also the transit of synthesized PPDK polypeptide through an intracellular membrane may be required, while such a transit sequence seems not to be required within cells of wheat and maize seeds.

  相似文献   

9.
Molecular Cloning of Tomato Plasma Membrane H-ATPase   总被引:14,自引:5,他引:9       下载免费PDF全文
  相似文献   

10.
Synthesis of Proteins by Isolated Euglena gracilis Chloroplasts   总被引:3,自引:2,他引:1       下载免费PDF全文
Intact Euglena gracilis chloroplasts, which had been purified on gradients of silica sol, incorporated [35S]methionine or [3H]leucine into soluble and membrane-bound products, using light as the only source of energy. The chloroplasts were osmotically shocked, fractionated on discontinuous gradients of sucrose, and the products of protein synthesis of the different fractions characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The soluble fraction resolved into three zones of radioactivity, the major one corresponding to the large subunit or ribulose diphosphate carboxylase. The thylakoid membrane fraction contained nine labeled polypeptides, the two most prominent in the region of 31 and 42 kilodaltons. The envelope fraction contained a major radioactive peak of about 48 kilodaltons and four other minor peaks. The patterns of protein synthesis by isolated Euglena chloroplasts are broadly similar to those observed with chloroplasts of spinach and pea.  相似文献   

11.
An H+-translocating inorganic pyrophosphatase (PPase) was isolated and purified from red beet (Beta vulgaris L.) tonoplast. One major polypeptide of molecular weight 67 kilodalton copurified with fluoride-inhibitable PPase activity when subjected to one-dimensional polyacrylamide gel electrophoresis. Overall, a 150-fold purification of the PPase was obtained, from the tonoplast fraction, through anion exchange chromatography of the detergent-solubilized membranes followed by ammonium sulfate precipitation and gel filtration chromatography. The purified polypeptide showed no cross-reactivity with antibodies raised against the 67 kilodalton subunit of the tonoplast ATPase.  相似文献   

12.
Obokata J 《Plant physiology》1987,84(2):535-540
Synthesis and assembly of photosystems (PS) I and II polypeptides in etiochloroplasts isolated from greening wheat (Triticum aestivum L. cv Norin 61) seedlings were studied. The isolated etiochloroplasts synthesized PSI polypeptides of 66 and 15 kilodaltons, PSII polypeptides of 46 and 42 kilodaltons, and atrazine-binding 34 to 32 kilodalton polypeptide. Their assembly processes in the thylakoid membrane were studied by pulse-chase labeling with [35S]methionine, mild solubilization of the thylakoid membrane with Triton X-100, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis. The newly synthesized polypeptides of 66, 46, 42, 34, and 32 kilodaltons were first integrated into the complexes of 7.5, 5.9, 7.5, 6.3, and 7.5 Svedberg units, respectively, in 20 minutes. After the chase with excess amount of methionine for 100 min, they were found in complexes of 9.5, 9.1, 9.1, 9.1, and 9.1 Svedberg units, respectively. In this condition, stained polypeptides of PSI and PSII were found in the complexes of 11.1 and 10.3 Svedberg units, respectively. These results indicated that newly synthesized PSI or PSII polypeptides are integrated into intermediate complexes, but not complete complexes in the isolated etiochloroplasts. The relationship between the processing of the atrazine-binding 32 kilodalton polypeptide and its assembly into the PSII complex is also discussed.  相似文献   

13.
Biosynthesis of the Tonoplast H-ATPase from Oats   总被引:2,自引:1,他引:1       下载免费PDF全文
Randall SK  Sze H 《Plant physiology》1989,89(4):1292-1298
To determine whether the tonoplast-type H+-ATPase was differentially synthesized in various parts of the oat seedling, sections of 4-day-old oat (Avena sativa L. var Lang) seedlings were labeled in vivo with [35S]methionine and ATPase subunits were precipitated with polyclonal antisera. ATPase subunits were detected in all portions of the seedling with the exception of the seed. Lesser amounts of the 60 and 72 kilodalton polypeptides of the ATPase were found in apical regions (0-5 millimeter) than in maturing regions (10-15, or 20-25 millimeter from the tip) of the roots or shoots. To initiate a study of the biosynthesis of the ATPase, the intracellular site of synthesis for two peripheral ATPase subunits was investigated. Poly(A) RNA from either free or membrane-bound polysomes was isolated and translated in vitro. Message encoding the 72 kilodalton (catalytic) subunit was found predominantly in mRNA isolated from membrane-bound polysomes. In contrast, the message for the 60 kilodalton (putative regulatory) subunit was found predominantly on free polysomes. Polypeptides synthesized in vivo or obtained from RNA translated in vitro exhibited no apparent size differences (limit of resolution, approximately 1 kilodalton), suggesting the absence of cleaved precursors for the 72 or 60 kilodalton subunits. These data suggest a complex mechanism for the synthesis and assembly of the tonoplast ATPase.  相似文献   

14.
Induction of corn (Zea mays L.) seedling root membrane polypeptides was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis in relation to induction of nitrate uptake. When nitrate uptake was studied using freshly harvested roots from 4-day old corn seedlings, a steady state rate of uptake was achieved after a lag of 2 to 3 hours. The plasma membrane fraction from freshly harvested roots (uninduced) and roots pretreated in 5 millimolar nitrate for 2.5 or 5 hours (induced) showed no differences in the major polypeptides with Coomassie blue staining. Autoradiography of the 35S-methionine labeled proteins, however, showed four polypeptides with approximate molecular masses of 165, 95, 70, and 40 kilodaltons as being induced by both 2.5 and 5-hour pretreatment in 5 millimolar nitrate. All four polypeptides appeared to be integral membrane proteins as shown by Triton X-114 (octylphenoxypolyethoxyethanol) washing of the membrane vesicles. Autoradiography of the two-dimensional gels revealed that several additional low molecular weight proteins were induced. A 5-hour pretreatment in 5 millimolar chloride also induced several of the low molecular weight polypeptides, although a polypeptide of about 30 kilodaltons and a group of polypeptides around 40 kilodaltons appeared to be specifically induced by nitrate. The results are discussed in relation to the possibility that some of the polypeptides induced by nitrate treatment may be directly involved in nitrate transport through the plasma membrane.  相似文献   

15.
Protein kinase and phosphatase activities were studied in plasmalemma and tonoplast membrane fractions from corn (Zea mays L.) roots in order to test the hypothesis that the tonoplast H+-ATPase is regulated by intrinsic protein phosphorylation (G Zocchi, SA Rogers, JB Hanson 1983 Plant Sci Lett 31: 215-221), and to facilitate future purification of kinase activities from these membranes. Kinase activity in the plasmalemma was about three-fold higher than in the tonoplast, and displayed Michaelis Menten-type behavior with a Km value for MgATP2− of about 50 micromolar. Both activities were optimal at 3 millimolar free Mg2+ and had pH optima at 6.6 and 7.0 for the plasmalemma and tonoplast, respectively. Kinase activities in both fractions were stimulated by 1 micromolar free Ca2+, but calmodulin had no stimulatory effect, and chlorpromazine was inhibitory only at high concentrations. The pattern of phosphopeptides on SDS polyacrylamide gel electrophoresis was similar in both fractions except for one band of 50 kilodaltons that was present only in the tonoplast. A partially purified H+-ATPase fraction was prepared from tonoplast membranes, incubated under conditions optimal for protein phosphorylation. The three polypeptides (of 67, 57, and 36 kilodaltons), enriched in this fraction, did not become phosphorylated, suggesting that this protein is not regulated by endogenous protein phosphorylation. Protein phosphatase activity was detected only in the plasmalemma fraction. These results indicate that a regulatory cycle of protein phosphorylation and dephosphorylation may operate in the plasmalemma. The activity in the tonoplast appears to originate from plasmalemma contamination.  相似文献   

16.
When rice (Oryza sativa) cell suspension cultures are grown in the presence of [terminal methylenes-3H]spermidine, label is incorporated in a single polypeptide with a molecular mass of 18 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Preincubation of cell cultures with polyamine biosynthesis inhibitors difluoromethylarginine and difluoromethylornithine, resulted in increased incorporation of the label into the 18 kilodalton polypeptide. In cells in which protein synthesis was arrested by cycloheximide, no label was detected in the 18 kilodalton polypeptide, suggesting a requirement for de novo protein synthesis.  相似文献   

17.
In vitro synthesis and processing of tomato fruit polygalacturonase   总被引:10,自引:5,他引:5       下载免费PDF全文
The in vitro processing of tomato fruit polygalacturonase (PG) (poly[1,4-α-d-galacturonide]glucanohydrolase, EC 3.2.1.15) was studied. Complete chemical deglycosylation of a mixture of mature, purified PG 2A and PG 2B isozymes (45 and 46 kilodaltons; respectively) with trifluoromethane sulfonic acid yielded a single polypeptide of 42 kilodaltons. Similarly, N-terminal amino acid sequencing of the PG 2A/2B isozyme mixture yielded a single 21 amino acid N-terminal sequence, suggesting that the two isozymes result from differential post-translational processing of a single polypeptide. Translation of PG mRNA in vitro results in the synthesis of a single polypeptide with an apparent molecular weight of 54 kilodaltons. Nucleotide sequence analysis of a full-length PG cDNA clone indicates that the large size difference between the PG in vitro translation product and the mature isozymes is due to the presence of a 71 amino acid (8.2 kilodaltons) domain at the N-terminus of in vitro translated PG, consisting of a hydrophobic signal sequence followed by a highly charged prosequence. To determine the precise cleavage site of the signal sequence, PG mRNA was translated in vitro in the presence of canine pancreas microsomal membranes. This resulted in the production of two glycosylated PG processing intermediates with apparent molecular weights of 58 and 61 kilodaltons. The PG processing intermediates were shown to be sequestered within the lumen of the microsomal membranes by protease protection and centrifugational analysis. Deglycosylation of the PG processing intermediates with endoglycosidase H yielded a single polypeptide with an apparent molecular weight of 54 kilodaltons. The production of two distinct, glycosylated processing intermediates from the single in vitro translated PG polypeptide suggests a mechanism by which the differential glycosylation observed for the mature PG 2A and PG 2B isozymes may occur. Edman degradation of 3H-labeled 58 and 61 kilodalton PG processing intermediates indicates that the site of signal sequence cleavage is after amino acid 24 (serine). These results suggest that the proteolytic processing of PG occurs in at least two steps, the first being the co-translational removal of the 24 amino acid signal sequence and the second being the presumed post-translational removal of the remaining highly charged 47 amino acid prosequence.  相似文献   

18.
Ni M  Beevers L 《Plant physiology》1991,97(1):264-272
Tonoplast vesicles were isolated by discontinuous sucrose gradient centrifugation in the presence of Mg2+ from 5 day old corn (Zea mays L., Golden Cross Bantam) seedling roots. Marker enzyme assays indicated only a low degree of cross-contamination of tonoplast vesicles at the 10/23% (weight/weight) interface by other membrane components. Severalfold enrichment of tonoplast ATPase and pyrophosphatase was indicated in tonoplast fractions by dot blot studies with antibodies against an oat tonoplast ATPase and a mung bean tonoplast pyrophosphatase. Comparison of two-dimensional electrophoretic gels of tonoplast and microsomal membrane polypeptides revealed approximately 68 polypeptides to be specific to tonoplast by silver staining. Immunoblot analysis with antibodies against a tonoplast holoenzyme ATPase from oat roots revealed the presence of the 72, 60, and 41 kilodalton polypeptides in isolated tonoplast vesicles from corn roots. Affinity blotting with concanavalin A and secondary antibodies indicated the degree of glycosylation of tonoplast polypeptides, where 21 of 68 tonoplast-specific polypeptides contained detectable carbohydrate moieties. Salt and NaOH washes removed 38 of the tonoplast-specific polypeptides, indicating a peripheral association with the membrane. Thirteen of the peripheral polypeptides and eight of the integral polypeptides were identified as glycoproteins. This information on the polypeptide composition of the tonoplast of root cells will aid in gaining insight into the role of this membrane in controlling vacuolar functions.  相似文献   

19.
Cold Acclimation in Arabidopsis thaliana   总被引:27,自引:13,他引:14       下载免费PDF全文
The abilities of two races of Arabidopsis thaliana L. (Heyn), Landsberg erecta and Columbia, to cold harden were examined. Landsberg, grown at 22 to 24°C, increased in freezing tolerance from an initial 50% lethal temperature (LT50) of about −3°C to an LT50 of about −6°C after 24 hours at 4°C; LT50 values of −8 to −10°C were achieved after 8 to 9 days at 4°C. Similar increases in freezing tolerance were obtained with Columbia. In vitro translation of poly(A+) RNA isolated from control and cold-treated Columbia showed that low temperature induced changes in the population of translatable mRNAs. An mRNA encoding a polypeptide of about 160 kilodaltons (isoelectric point about 4.5) increased markedly after 12 to 24 h at 4°C, as did mRNAs encoding four polypeptides of about 47 kilodaltons (isoelectric points ranging from 5-5.5). Incubation of Columbia callus tissue at 4°C also resulted in increased levels of the mRNAs encoding the 160 kilodalton polypeptide and at least two of the 47 kilodalton polypeptides. In vivo labeling experiments using Columbia plants and callus tissue indicated that the 160 kilodalton polypeptide was synthesized in the cold and suggested that at least two of the 47 kilodalton polypeptides were produced. Other differences in polypeptide composition were also observed in the in vivo labeling experiments, some of which may be the result of posttranslational modifications of the 160 and 47 kilodalton polypeptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号