首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A better understanding of stem growth phenology and its climate drivers would improve projections of the impact of climate change on forest productivity. Under a Mediterranean climate, tree growth is primarily limited by soil water availability during summer, but cold temperatures in winter also prevent tree growth in evergreen forests. In the widespread Mediterranean evergreen tree species Quercus ilex, the duration of stem growth has been shown to predict annual stem increment, and to be limited by winter temperatures on the one hand, and by the summer drought onset on the other hand. We tested how these climatic controls of Q. ilex growth varied with recent climate change by correlating a 40‐year tree ring record and a 30‐year annual diameter inventory against winter temperature, spring precipitation, and simulated growth duration. Our results showed that growth duration was the best predictor of annual tree growth. We predicted that recent climate changes have resulted in earlier growth onset (?10 days) due to winter warming and earlier growth cessation (?26 days) due to earlier drought onset. These climatic trends partly offset one another, as we observed no significant trend of change in tree growth between 1968 and 2008. A moving‐window correlation analysis revealed that in the past, Q. ilex growth was only correlated with water availability, but that since the 2000s, growth suddenly became correlated with winter temperature in addition to spring drought. This change in the climate–growth correlations matches the start of the recent atmospheric warming pause also known as the ‘climate hiatus’. The duration of growth of Q. ilex is thus shortened because winter warming has stopped compensating for increasing drought in the last decade. Decoupled trends in precipitation and temperature, a neglected aspect of climate change, might reduce forest productivity through phenological constraints and have more consequences than climate warming alone.  相似文献   

2.
Restoration efforts to improve vigor of large, old trees and decrease risk to high‐intensity wildland fire and drought‐mediated insect mortality often include reductions in stand density. We examined 15‐year growth response of old ponderosa pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi) trees in northeastern California, U.S.A. to two levels of thinning treatments compared to an untreated (control) area. Density reductions involved radial thinning (thinning 9.1 m around individual trees) and stand thinning. Annual tree growth in the stand thinning increased immediately following treatment and was sustained over the 15 years. In contrast, radial thinning did not increase growth, but slowed decline compared to control trees. Available soil moisture was higher in the stand thinning than the control for 5 years post‐treatment and likely extended seasonal tree growth. Our results show that large, old trees can respond to restoration thinning treatments, but that the level of thinning impacts this response. Stand thinning must be sufficiently intensive to improve old tree growth and health, in part due to increasing available soil moisture. Importantly, focusing stand density reductions around the immediate neighborhood of legacy trees was insufficient to elicit a growth response, calling into question treatments attempting to increase vigor of legacy trees while still maintaining closed canopies in dry, coniferous forest types. Although radial thinning did not affect tree growth rates, this treatment may still achieve other resource objectives not studied here, such as protecting wildlife habitat, reducing the risk of severe fire injury, and decreasing susceptibility to bark beetle attacks.  相似文献   

3.
Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale‐independent metric called “box dimension.” This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.  相似文献   

4.
Most temperate forests are accumulating carbon (C) and may continue to do so in the near future. However, the situation may be different in water‐limited ecosystems, where the potentially positive effects of C and N fertilization and rising temperatures interact with water availability. In this study, we use the extensive network of plots of two consecutive Spanish national forest inventories to identify the factors that determine the spatial variation of the C stock change, growth, and mortality rate of forests in Peninsular Spain (below‐ and aboveground). We fitted general linear models to assess the response of C stock change and its components to the spatial variability of climate (in terms of water availability), forest structure (tree density and C stock), previous forest management, and the recent warming trend. Our results show that undisturbed forests in Peninsular Spain are accumulating C at a rate of ~1.4 Mg C ha?1 yr?1, and that forest structural variables are the main determinants of forest growth and C stock change. Water availability was positively related to growth and C accumulation. On the other hand, recent warming has reduced growth rate and C accumulation, especially in wet areas. Spatial variation in mortality (in terms of C loss) was mostly driven by differences in growth rate across plots, and was consistent with ‘natural’, self‐thinning dynamics related to the recent abandonment of forest management over large areas of Spain, with the consequent increase in tree density and competition. Interestingly, the negative effect of warming on forest C accumulation disappears if only managed stands are considered, emphasizing the potential of forest management to mitigate the effects of climate change. However, the effect of forest management was weak and, in some cases, not significant, implying the need of further research on its impact.  相似文献   

5.
The effect of density control of tree growth on revegetation sites planted by the ecological tree planting (ETP) method, one of the most common woodland creation methods devised in the 1970s in Japan, is analyzed. The ETP method is performed with the expectation of natural establishment of woodlands by planting saplings of native tree species composing potential natural vegetation in high density. The results show that the general growth condition of such woodlands is not inferior. Often, however, it is suggested that transition of the composition of the woodlands does not progress exactly along the transition expected, because of the characteristics of ETP sites, that is, even-aged forest despite the planting concept consisting of several tree species. Occasionally, expected natural selection does not occur. In such circumstances this is interpreted as suggesting that artificial density control, for example thinning, is necessary. A thinning trial was conducted on the ETP woodland in Himeji, Hyogo, Japan during the fourth year after planting, and tree growth was investigated in the third, seventh, and ninth years after thinning. The results show thinning has the potentiality to bring about substantial change in the establishment of multiple layered woodlands. When natural selection cannot be expected on ETP woodland, application of thinning as part of the management plan is important to establish ecological woodland with much ecological function.  相似文献   

6.
1 This study compares the structural characteristics of 12 old‐growth and six postfire second‐growth hemlock–northern hardwood stands in north central Adirondack Park, New York, in order to test the null hypothesis that there are no differences in species composition, size structure, age structure and attributes such as dead wood and canopy gaps between old‐growth stands and this type of second‐growth forest. 2 The second‐growth forests of this study regenerated following widespread logging‐related fires in either 1903 or 1908; the old growth and second growth have similar environmental settings. 3 Estimates of stand ages, derived from an increment core of the oldest tree in each stand, range from 88 to 390 years. 4 Structural attributes are related to stand age (i.e. stage of development). In comparison with the second‐growth forests of this study, older stands are characterized as (a) a larger average diameter of canopy trees; (b) a greater basal area of trees; (c) a lower density of canopy trees and of all trees ≥ 10 cm d.b.h.; (d) a higher density of eastern hemlock (Tsuga canadensis (L.) Carrière) trees; (e) a higher density of large trees (≥ 50 cm d.b.h.); (f) larger canopy gaps; and (g) a greater volume of coarse woody debris (both logs ≥ 20 cm d.b.h. and snags ≥ 10 cm d.b.h.). 5 Despite differences between old growth and second growth, especially in species composition, it appears from observations of the 18 stands that second‐growth forests are developing some structural characteristics of old growth. 6 Structural attributes of the old‐growth forests are similar to characteristics of the same forest type in geographically distant areas in eastern USA.  相似文献   

7.
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.  相似文献   

8.
Tree ring science is a new discipline in Bhutan but has contributed substantially to our understanding of climate history and informed sustainable forest management practices in the country. This paper describes dendroecological contributions to the second aspect for Blue Pine using three case studies. i) The effects of livestock grazing impact on Blue Pine radial growth were quantified. Radial growth increment was tendentially higher after three years of livestock exclosure, as compared to continued grazing. However, differences remained statistically not significant, likely due to the brevity of the treatment period. ii) Radial growth rates of Blue Pine were characterized across a 400 m elevation gradient. Cumulative radial growth over 40 years differed by a factor of more than three between the low and the high end of the gradient. However, below 2300 m, radial growth showed a continuous decline from 1990, likely as a results of drought due to climate change. iii) Effects of three levels of prescribed thinning of pole stage (DBH 30–50 cm) Blue Pine in central Bhutan showed distinct response to thinning. Heavy thinning lead to a thinning shock in the year after harvest and did not lead to significantly higher radial growth as compared to moderate thinning, which is thus recommended for the species. A positive thinning effect remained for seven years post operation. The case studies were incorporated into national guidelines on sustainable forest management in Bhutan and prove the demand for tree ring based research to inform policy and practice.  相似文献   

9.
Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2, and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13‐year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan–Monroe State Forest (MMSF) in Indiana, and a regional 11‐year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water‐demanding ‘mesophytic’ tree species. Given the current replacement of water‐stress adapted ‘xerophytic’ tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr?1) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1–3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth‐enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.  相似文献   

10.
Established forests currently function as a major carbon sink, sequestering as woody biomass about 26% of global fossil fuel emissions. Whether forests continue to act as a global sink will depend on many factors, including the response of aboveground wood production (AWP; MgC ha?1 yr?1) to climate change. Here, we explore how AWP in New Zealand's natural forests is likely to change. We start by statistically modelling the present‐day growth of 97 199 individual trees within 1070 permanently marked inventory plots as a function of tree size, competitive neighbourhood and climate. We then use these growth models to identify the factors that most influence present‐day AWP and to predict responses to medium‐term climate change under different assumptions. We find that if the composition and structure of New Zealand's forests were to remain unchanged over the next 30 years, then AWP would increase by 6–23%, primarily as a result of physiological responses to warmer temperatures (with no appreciable effect of changing rainfall). However, if warmth‐requiring trees were able to migrate into currently cooler areas and if denser canopies were able to form, then a different AWP response is likely: forests growing in the cool mountain environments would show a 30% increase in AWP, while those in the lowland would hardly respond (on average, ?3% when mean annual temperature exceeds 8.0 °C). We conclude that response of wood production to anthropogenic climate change is not only dependent on the physiological responses of individual trees, but is highly contingent on whether forests adjust in composition and structure.  相似文献   

11.
One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees > or = 3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane) and the canopy thinning phase (marked by increased competition and mortality). Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005) and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration.  相似文献   

12.
胡桃楸是东北东部山地阔叶红松林的重要组成树种。以胡桃楸个体有性生殖过程为研究对象,通过定株定枝调查,研究了胡桃楸芽种群分化、物候及散粉规律、颗粒生长发育过程及环境影响因子。结果表明:1.胡桃楸壮龄树芽种群分化简单。2.胡桃楸个体间花期物候差异很大,并具有典型的雌雄异熟现象。3.胡桃幼果期生长速度快,生长分化现象严重,疏果率高;进入果实生长后期之后,生长速度及疏果率均显著降低。  相似文献   

13.
宣海憧  郭梦昭  高露双  范春雨 《生态学报》2020,40(12):4087-4093
以3种间伐强度处理下(15%,30%和50%)针阔混交林内优势树种红松(Pinus koraiensis)和水曲柳(Fraxinus mandshurica)为研究对象,基于3次复测数据和树轮宽度数据分析不同间伐强度处理下红松和水曲柳的竞争变化特征,探讨竞争环境变化对保留木径向生长的影响。结果表明,1)红松保留木竞争环境发生变化的单木比例随着间伐强度增加而有所下降,但竞争减弱的保留木所占比例与间伐强度正相关,重度间伐样地内竞争减弱的红松保留木所占比例最大达到63%。不同间伐强度下水曲柳保留木竞争环境发生变化的单木比例一致,竞争减弱的单木比例占50%。2)不同竞争环境的水曲柳保留木径向生长趋势基本一致,而红松保留木径向生长变化趋势有所不同。轻度和重度间伐样地内竞争减弱的红松保留木径向生长在间伐后均呈上升趋势,而中度间伐样地内竞争减弱的红松保留木和各样地竞争不变的红松保留木以及不同竞争强度下水曲柳保留木均在2013年和2014年(间伐后2年内)出现生长抑制,而在2015年(伐后第3年)得到促进。3)随着间伐强度上升,自2015年(伐后第3年)竞争减弱的红松保留木径向生长年增量明显增加,显著高于竞争不变的红松(P0.05),而竞争减弱的水曲柳保留木径向生长年增量自2014年(伐后第2年)在重度间伐样地内增加幅度最大,其次为轻度间伐样地,而在中度间伐样地内增加幅度最低。  相似文献   

14.
Aim Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness–productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location We analysed 231 plots ranging from 34.0° to 48.3° N latitude and from 75.0° to 124.2° W longitude in the United States. Methods We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light‐blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species richness is under multivariate control.  相似文献   

15.
Climate change is an important factor affecting forest growth. Therefore, approaching the impacts of climate change on forest growth is of great significance to ameliorate this degraded land and push up forestry development. This paper initially probes the impacts of climate change on tree growth in Yellow River Delta region and responds of different tree species on the change. In this study, five species of 22-year-old trees were selected, and the tree biomass was measured by standard site methods and tree ring sampling to pursue the impacts of climate change on forest growth. Besides, growth models of the different tree species were established and verified using Robinia pseudoacacia as an example. The results showed: (1) In the Yellow River Delta, the most adapted tree species are Fraxinus chinensis and R. pseudoacacia. (2) Precipitation is the main meteorological factor affecting tree growth, while temperature and air pressure are also significantly correlated with tree growth. (3) Linear and power function models can simulate tree growth well. From the verification results, the modified R. pseudoacacia biomass is 294.54 t/ha, and the simulated biomass of the linear function model is close to the value. It is expected that the research not only provides a theoretical basis for forestry development in saline lands, but also helps to rehabilitate saline-alkali lands and cope with climate change.  相似文献   

16.
Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the −2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and > 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality.  相似文献   

17.
18.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

19.
After a disturbance, balsam fir stands (Abies balsamea (L.) Mill.) regenerate primarily by seedlings, but layering is also known to occur and to contribute to the subsequent population base. We examined in detail the lower part of one balsam fir stem, stump and roots in order to: reconstruct the establishment of one mature balsam fir with evidence of layer-origin. The life history of this tree was then reconstructed by measuring tree-ring widths, dating all the sections, and by identifying the presence or absence of pith to differentiate between stem and root structures. We located a pith structure in this tree 51 cm below ground level. This lowest section with pith was characterized by a diameter of only 3 mm and contained 40 concentric tree-rings, suggesting that it originated from a branch. Radial and height growth measured were small until the beginning of 1930s. This period was abruptly followed by an increase in growth in both height and diameter as well as a massive production of adventitious roots, probably produced by partial harvesting of the parent tree/stand.  相似文献   

20.
1.  Relationships between tropical rain forest biomass and environmental factors have been determined at regional scales, e.g. the Amazon Basin, but the reasons for the high variability in forest biomass at local scales are poorly understood. Interactions between topography, soil properties, tree growth and mortality rates, and treefalls are a likely reason for this variability.
2.  We used repeated measurements of permanent plots in lowland rain forest in French Guiana to evaluate these relationships. The plots sampled topographic gradients from hilltops to slopes to bottomlands, with accompanying variation in soil waterlogging along these gradients. Biomass was calculated for >175 tree species in the plots, along with biomass productivity and recruitment rates. Mortality was determined as standing dead and treefalls.
3.  Treefall rates were twice as high in bottomlands as on hilltops, and tree recruitment rates, radial growth rates and the abundance of light-demanding tree species were also higher.
4.  In the bottomlands, the mean wood density was 10% lower than on hilltops, the basal area 29% lower and the height:diameter ratio of trees was lower, collectively resulting in a total woody biomass that was 43% lower in bottomlands than on hilltops.
5.  Biomass productivity was 9% lower in bottomlands than on hilltops, even though soil Olsen P concentrations were higher in bottomlands.
6.   Synthesis . Along a topographic gradient from hilltops to bottomlands there were higher rates of treefall, which decreased the stand basal area and favoured lower allocation to height growth and recruitment of light-demanding species with low wood density. The resultant large variation in tree biomass along the gradient shows the importance of determining site characteristics and including these characteristics when scaling up biomass estimates from stand to local or regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号