首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When sheep liver pyruvate carboxylase was diluted below 4 EU/ml, it underwent inactivation involving two kinetically distinct processes, i.e., a rapid initial burst followed by a slower second phase. The catalytic activity of the diluted enzyme eventually approached zero, suggesting the occurrence of an irreversible process. Analysis of the quaternary structure of the enzyme by gel filtration chromatography and electron microscopy showed that most of the enzyme molecules occur as tetramers at high enzyme concentrations. However, dilution of the enzyme below 4 EU/ml led to the appearance of dimers and monomers which were essentially inactive under the conditions of the assay system used. The presence of acetyl-CoA during dilution prevented inactivation from occurring and preserved the tetrameric structure. When added after dilution, acetyl-CoA prevented further inactivation from occurring but did not reactivate the enzyme. However, acetyl-CoA did cause a relatively rapid reassociation of the inactive monomers and dimers to form inactive tetramers.  相似文献   

2.
The cytoplasmic malate dehydrogenase of Saccharomyces cerevisiae was radioactively labeled during its synthesis on a glucose-free derepression medium. After purification a sensitive radio-immunoassay for this enzyme could be developed. The assay showed that after the physiological, glucose-dependent 'catabolite inactivation' of cytoplasmic malate dehydrogenase an inactive enzyme protein is immunologically not detectable. Together with the irreversibility of this reaction in vivo this finding strongly suggest a proteolytic mechanism of enzyme inactivation. For this process the term 'catabolite degradation' is used.  相似文献   

3.
Sedimentation equilibrium analysis demonstrated that preparations of bovine lipoprotein lipase contain a complex mixture of dimers and higher oligomers of enzyme protein. Enzyme activity profiles from sedimentation equilibrium as well as from gel filtration indicated that activity is associated almost exclusively with the dimer fraction. To explore if the enzyme could be dissociated into active monomers, 0.75 M guanidinium chloride was used. Sedimentation velocity measurements demonstrated that this treatment led to dissociation of the lipase protein into monomers. Concomitant with dissociation, there was an irreversible loss of catalytic activity and a moderate change in secondary structure as detected by circular dichroism. The rate of inactivation increased with decreasing concentrations of active lipase, but addition of inactive lipase protein did not slow down the inactivation. This indicates that reversible interactions between active species precede the irreversible loss of activity. The implication is that dissociation initially leads to a monomer form which is in reversible equilibrium with the active dimer, but which decays rapidly into an inactive form, and is therefore not detected as a stable component in the system.  相似文献   

4.
DL-Allylglycine causes a marked increase in mouse brain ornithine decarboxylase (ODC) activity. The amount of immunoreactive enzyme protein increases concomitantly with the activity, but the enzyme protein decreases more slowly than that of the activity. The amount of immunoreactive ODC in brain is many hundred times that of the catalytically active enzyme. The fact that mouse brain cytosol contains high amounts of dissociable antizyme (an inactivating protein) indicates the existence of an inactive, immunoreactive ODC-antizyme pool. The total antizyme content does not change markedly, but instead there are significant changes in different antizyme pools. Putrescine concentrations start to increase 8 h after treatment with allylglycine and concomitantly with this increase, antizyme is released to inhibit enzyme activity. These results indicate the involvement of antizyme in the inactivation process of ODC.  相似文献   

5.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

6.
Heme peroxidases are subject to a mechanism-based oxidative inactivation. During the catalytic cycle, the heme group is activated to form highly oxidizing species, which may extract electrons from the protein itself. In this work, we analyze changes in residues prone to oxidation owing to their low redox potential during the peroxide-mediated inactivation of chloroperoxidase from Caldariomyces fumago under peroxidasic catalytic conditions. Surprisingly, we found only minor changes in the amino acid content of the fully inactivated enzyme. Our results show that tyrosine residues are not oxidized, whereas all tryptophan residues are partially oxidized in the inactive protein. The data suggest that the main process leading to enzyme inactivation is heme destruction. The molecular characterization of the peroxide-mediated inactivation process could provide specific targets for the protein engineering of this versatile peroxidase.  相似文献   

7.
The molecular chaperone, GroEL, facilitates correct protein folding and inhibits protein aggregation. The function of GroEL is often, though not invariably, dependent on the co-chaperone, GroES, and ATP. In this study it is shown that GroEL alone substantially reduces the inactivation of purified Ca(++)-ATPase from rabbit skeletal muscle sarcoplasmic reticulum. In the absence of GroEL, the enzyme became completely inactive in about 45-60 hours when kept at 25 degrees C, while in the presence of an equimolar amount of GroEL, the enzyme remained approximately 80% active even after 75 hours. Equimolar amounts of BSA or lysozyme were unable to protect the enzyme from inactivation under identical conditions. Analysis by SDS-PAGE showed GroEL was acting by blocking the aggregation of ATPase at 25 degrees C. GroEL was not as effective in protection at -20 degrees C or 4 degrees C. These results are discussed in the context of current models of the GroEL mechanism.  相似文献   

8.
Incubation of 5'-p-fluorosulfonylbenzoyladenosine with the catalytic subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase led to the formation of an inactive enzyme irreversibly modified with approximately one mol of reagent per mol of subunit. The inactivation reaction followed pseudofirst order kinetics. The rate of inactivation at various reagent concentrations exhibited saturation kinetics implying that the reagent reversibly binds to the enzyme prior to inactivation. The addition of MgATP, MgADP, or MgAMP-PNP to the reaction mixture fully protected the enzyme from inactivation by 5'-p-fluorosulfonylbenzoyladenosine. The reagent was demonstrated to be a competitive inhibitor of MgATP with a Ki of 0.235 mM. Metal-free nucleotides were without effect upon the reaction rate while metal ions alone accelerated the inactivation rate up to 7-fold. The inclusion of casein or synthetic peptide substrate in the incubation mixture did not affect the reaction kinetics. Reaction of 5'-p-fluorosulfonylbenzoyladenosine with the kinase subunit exhibits all of the characteristics of affinity labeling of the MgATP-binding site.  相似文献   

9.
The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M-1 min-1 for CN-). The rate of inactivation decreased with decreasing pH. [14C]cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state.  相似文献   

10.
Glutathione reductase from the liver of DBA/2J mice was purified to homogeneity by means of ammonium sulfate fractionation and two subsequent affinity chromatography steps using 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose and N6-(6-aminohexyl)-adenosine 2',5'-biphosphate-Sephadex columns. A facile procedure for the synthesis of 8-(6-aminohexyl)-amino-2'-phospho-adenosine diphosphoribose is also presented. The purified enzyme exhibits a specific activity of 158 U/mg and an A280/A460 of 6.8. It was shown to be a dimer of Mr 105000 with a Stokes radius of 4.18 nm and an isoelectric point of 6.46. Amino acid composition revealed some similarity between the mouse and the human enzyme. Antibodies against mouse glutathione reductase were raised in rabbits and exhibited high specificity. The catalytic properties of mouse liver glutathione reductase have been studied under a variety of experimental conditions. As with the same enzyme from other sources, the kinetic data are consistent with a 'branched' mechanism. The enzyme was stabilized against thermal inactivation at 80 degrees C by GSSG and less markedly by NADP+ and GSH, but not by NADPH or FAD. Incubation of mouse glutathione reductase in the presence of NADPH or NADH, but not NADP+ or NAD+, produced an almost complete inactivation. The inactivation by NADPH was time, pH and concentration dependent. Oxidized glutathione protected the enzyme against inactivation, which could also be reversed by GSSG or other electron acceptors. The enzyme remained in the inactive state even after eliminating the excess NADPH. The inactive enzyme showed the same molecular weight as the active glutathione reductase. The spectral properties of the inactive enzyme have also been studied. It is proposed that auto-inactivation of glutathione reductase by NADPH and the protection as well as reactivation by GSSG play in vivo an important regulatory role.  相似文献   

11.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme with a specific requirement of lecithin for function. The purified enzyme devoid of lipid (apodehydrogenase) is inactive but can be reactivated by forming a complex with phospholipid containing lecithin. We find that, of the six half cysteines present in D-beta-hydroxybutyrate dehydrogenase, only two are in the reduced form and available for modification with N-ethylmaleimide, even after denaturation in sodium dodecyl sulfate. Diamide treatment of either the inactive apodehydrogenase or the active enzyme-phospholipid complex resulted in complete loss of enzymic activity, the apodehydrogenase being assayed after addition of phospholipid. The inactivation by diamide can be reversed by the addition of dithiothreitol with full recovery of activity. Derivatization using N-[14C]ethylmaleimide showed that diamide modified only one sulfhydryl per enzyme monomer. The other sulfhydryl appears not to be essential for function since full activity can be restored after this sulfhydryl had been covalently derivatized with N-ethylmaleimide. Protein cross-linking was not observed after diamide modification of D-beta-hydroxybutyrate dehydrogenase, indicating that a disulfide bridge was not formed between enzyme subunits. The diamide-modified enzyme retains the ability to bind coenzyme, NAD(H), as detected by quenching of the intrinsic fluorescence of the protein. However, resonance energy transfer from protein to bound NADH and enhancement of NADH fluorescence were not observed, indicating that diamide modification of the protein alters the nucleotide binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Concanavalin A added to intact cells at 37 degrees caused rapid and reversible inactivation of a soluble enzyme, tyrosine aminotransferase, in two lines of rat hepatoma tissue culture cells grown in monolayer culture. This temperature-dependent process was independent of de novo protein and RNA synthesis and independent of increased uptake of Ca2+ and Mg2+ or glucose. The inactivation could be reversed by adding alpha-methyl-D-mannopyranoside a competing sugar for concanavalin A binding. Other lectins known to bind to different sugars did not bring about the inactivation of tyrosine aminotransferase. Addition of concanavalin A did not result in the inactivation of another soluble enzyme, lactic dehydrogenase. The maintenance of tyrosine aminotransferase in an inactive form after the binding of concanavalin A to the cells required the continued presence of concanavalin A. This effect of concanavalin A could not be mimicked either by dibutyryl cyclic adenosine or guanosine monophosphoric acid. Incubation of cell extracts with concanavalin A did not result in inactivation nor did mixing of extracts from concanavalin A-treated cells with extracts from untreated cells. On the basis of these results we conclude that the following are the essential requirements for concanavalin A to bring about the inactivation of tyrosine aminotransferase: (a) the binding of native concanavalin A to the cells; (b) integrity of certain structural elements of the cells.  相似文献   

13.
The "host shutoff" function of bacteriophage T7 involves an inactivation of the host Escherichia coli RNA polymerase by an inhibitor protein bound to the enzyme. When this inhibitor protein, termed I protein, was removed from the inactive RNA polymerase complex prepared from T7-infected cells by glycerol gradient centrifugation in the presence of 1 M KCl, the enzyme recovered its activity equivalent to about 70 to 80% of the activity of the enzyme from uninfected cells. Analysis of the activity of E. coli RNA polymerase from E. coli cells infected with various T7 mutant phages indicated that the T7 gene 2 codes for the inhibitor I protein. The activity of E. coli RNA polymerase from gene 2 mutant phage-infected cells, which was about 70% of that from uninfected cells, did not increase after glycerol gradient centrifugation in the presence of 1 M KCl, indicating that the salt-removable inhibitor was not present with the enzyme. It was found that the reduction in E. coli RNA polymerase activity in cells infected with T7(+) or gene 2 mutant phage, i.e., about 70% of the activity of the enzyme compared to that from uninfected cells after glycerol gradient centrifugation in the presence of 1 M KCl, results from the function of T7 gene 0.7. E. coli RNA polymerase from gene 0.7 mutant phage-infected cells was inactive but recovered a full activity equivalent to that from uninfected cells after removal of the inhibitor I protein with 1 M KCl. E. coli RNA polymerase from the cells infected with newly constructed mutant phages having mutations in both gene 2 and gene 0.7 retained the full activity equivalent to that from uninfected cells with or without treatment of the enzyme with 1 M KCl. From these results, we conclude that both gene 2 and gene 0.7 of T7 are involved in accomplishing complete shutoff of the host E. coli RNA polymerase activity in T7 infection.  相似文献   

14.
M Rotenberg  D Zakim 《Biochemistry》1989,28(21):8577-8582
The GT2P isoform of microsomal UDP-glucuronosyltransferase from pig liver is a lipid-dependent enzyme. The data in the present work indicate that, in addition to regulation of activity, the thermal stability of the enzyme also is modulated by the acyl chain composition of phosphatidylcholines (PC) used to reconstitute the activity of pure enzyme. There was a reversible, temperature-dependent change in the state of the pure enzyme to an inactive form with onset at T greater than 38 degrees C, depending on the environment of the enzyme. The midpoint for the transition shifted from 39.8 degrees C for enzyme in a bilayer of distearoylphosphatidylcholine (DSPC) to 47.5 degrees C for enzyme in a bilayer of 1-stearoyl-2-oleoylphosphatidylcholine (SOPC). For all lipids, the transition from a catalytically active to an inactive form of the enzyme was associated with large compensating changes in H and S. Lipid-induced stabilization of the active form of UDP-glucuronosyltransferase at T greater than 37 degrees C was associated with decreases in delta H and delta S, but the decreases in delta S were larger, indicating that lipid-induced stabilization of the active form of the enzyme was entropic. The transition between the active and inactive forms of the enzyme was too rapid in either direction to measure in a standard spectrophotometer. In addition to reversible inactivation of the enzyme, there was a slower irreversible, temperature-dependent inactivation. The rate of this process depended on the acyl chains of the phosphocholines interacting with the enzyme. However, there was no obvious correlation between the structures of lipids that stabilized the different inactivation reactions.  相似文献   

15.
Hydrogenases catalyze the reversible activation of dihydrogen. The hydrogenases from the aerobic, N2-fixing microorganisms Azotobacter vinelandii and Rhizobium japonicum are nickel- and iron-containing dimers that belong to the group of O2-labile enzymes. Exposure of these hydrogenases to O2 results in an irreversible inactivation; therefore, these enzymes are purified anaerobically in a fully active state. We describe in this paper an electron acceptor-requiring and pH-dependent, reversible inactivation of these hydrogenases. These results are the first example of an anaerobic, reversible inactivation of the O2-labile hydrogenases. The reversible inactivation required the presence of an electron acceptor. The rate of inactivation was first-order, with similar rates observed for methylene blue, benzyl viologen, and phenazine-methosulfate. The rate of inactivation was also dependent on the pH. However, increasing the pH of the enzyme in the absence of an electron acceptor did not result in inactivation. Thus, the reversible inactivation was not a result of high pH alone. The inactive enzyme could not be reactivated by H2 or other reductants at high pH. Titration of enzyme inactivated at high pH back to low pH was also ineffective at reactivating the enzyme. However, if reductants were present during this titration, the enzyme could be fully reactivated. The temperature dependence of inactivation yielded an activation energy of 44 kJ X mol-1. Gel filtration chromatography of active and inactive hydrogenase indicated that neither dissociation nor aggregation of the dimer hydrogenase was responsible for this reversible inactivation. We propose a four-state model to describe this reversible inactivation.  相似文献   

16.
L S Cook  H Im    F R Tabita 《Journal of bacteriology》1988,170(12):5473-5478
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPC/O) was inactivated in crude extracts of Rhodospirillum rubrum under atmospheric levels of oxygen; no inactivation occurred under an atmosphere of argon. RuBP carboxylase activity did not decrease in dialyzed extracts, indicating that a dialyzable factor was required for inactivation. The inactivation was inhibited by catalase. Purified RuBPC/O is relatively oxygen stable, as no loss of activity was observed after 4 h under an oxygen atmosphere. The aerobic inactivation catalyzed by endogenous factors in crude extracts was mimicked by using a model system containing purified enzyme, ascorbate, and FeSO4 or FeCl3. Dithiothreitol was found to substitute for ascorbate in the model system. Preincubation of the purified enzyme with RuBP led to enhanced inactivation, whereas Mg2+ and HCO3- significantly protected against inactivation. Unlike the inactivation catalyzed by endogenous factors from extracts of R. rubrum, inactivation in the model system was not inhibited by catalase. It is proposed that ascorbate and iron, in the presence of oxygen, generate a reactive oxygen species which reacts with a residue at the activation site, rendering the enzyme inactive.  相似文献   

17.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

18.
Human 5-lipoxygenase contains an essential iron   总被引:5,自引:0,他引:5  
The iron content of human 5-lipoxygenase has been determined by a colorimetric assay using the chromogenic ligand FerroZine. The highly active enzyme was obtained from a baculovirus expression system and purified using an ATP-agarose chromatography column (Denis, D., Falgueyret, J.-P., Riendeau, D., and Abramovitz, M. (1991) J. Biol. Chem. 266, 5072-5079). A linear correlation was observed between the enzyme's specific activity and iron content in six different preparations. Enzyme with the highest specific activity (24 mumol of 5-hydroperoxyeicosatetraenoic acid/mg of protein) contained 1.1 mol of iron/mol of enzyme, whereas inactive enzyme contained no detectable iron. The iron is tightly bound to the enzyme and could only be released after inactivation of the enzyme by exposure to oxygen.  相似文献   

19.
Urease is induced by urea in Evernia prunastri (L.) Ach. thallus, but the enzyme becomes inactive from the fifth hour of culture, this process being more complete when the thallus is incubated in white light than when the thallus is aging in darkness. Dithiothreitol prevents this inactivation to some extent by reduction (or protection) of -SH groups in the protein. In vivo inactivation, in darkness as well as in the light, is accompanied by increase in the molecular mass of the enzyme; this pattern is not greatly changed by dithiothreitol.  相似文献   

20.
The kinetics of inactivation and reactivation of rabbit skeletal muscle phosphofructokinase have been studied as a function of pH and enzyme concentration at constant temperature in phosphate buffer. From the enzyme concentration dependence, we conclude that the minimal mechanism for inactivation involves a protonation step followed by isomerization to an inactive form and then dissociation to a species of one-half the molecular weight. Other data indicate a subsequent isomerization of the dissociated form. The pH and temperature dependence of the inactivation process shows that it is controlled by ionizable groups, and that the apparent pK for these groups is temperature-dependent in such a way as to make the enzyme show the characteristic of cold lability below pH 7. Reactivation of the inactive enzyme occurs by a kinetically different pathway involving deprotonation of an inactive, dissociated form to a form which may either isomerize to another inactive form, or dimerize to the active enzyme. A general mechanism is postulated in which the inactivation and reactivation processes are different aspects of the same mechanism. This mechanism assumes four species (two containing four subunits and two containing two subunits) each of which can exist in a protonated and unprotonated form. Inactivation or reactivation induced by changes in pH or temperature reflect the kinetic establishment of a new steady state between these forms. How the apparent pK values which control the distribution of the enzyme between protonated and unprotonated forms describe the pH-dependent characteristics of the enzyme is discussed in terms of the proposed mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号