首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of neutral resins on the fermentation production of rubradirin   总被引:2,自引:0,他引:2  
Summary Rubradirin is an antibiotic of complex chemical structure which is activevs. methicillin resistant staphylococci. Its development has been limited due to inadequate production yields. The incorporation of neutral resins into fermentations ofStreptomyces achromogenes v.rubradiris, UC® 8051 resulted in the enhanced production of rubradirin. Resins HP-20, HP-21, XAD-2, XAD-7 and XAD-16 were employed in flask and tank fermentations. The incorporation of these resins promoted 2- to 4-fold enhancements of the rubradirin activity produced in flask fermentations, and the incorporation of XAD-16 and HP-21 into tank fermentations promoted production titer increases >5 fold.  相似文献   

2.
Kinema fermentations of Indian and Canadian No. 1 soybeans by Bacillus sp. DK-W1 and by mixed cultures of Bacillus sp. DK-W1 and Enterococcus faecium DK-C1 were essentially identical. The viable cell count of Bacillus increased from an initial 105 to 1010 c.f.u./g wet wt after 48 h incubation at 37°C. The pH of the fermentation dropped from an initial 6.9 to about 6.4 after 8 h and then rose to 8.6 after 32 h, with a coincident increase in proteolytic activity and ammonia concentration. The fermentations containing E. faecium and Bacillus exhibited a greater initial pH decline and a slightly retarded subseqent increase in pH compared with fermentations with Bacillus only. The presence of E. faecium had no detectable effects on growth of the Bacillus, proteolytic activity, ammonia production or the final pH of the fermentations.P.K. Sarkar was and P.E. Cook and J.D. Owens are with the Food Microbial Interactions Laboratory, Department of Food Science and Technology, University of Reading, Reading RG6 2AP, UK; P.K. Sarkar is now with the Microbiology Laboratory, Centre for Life Sciences, University of North Bengal, Siliguri 734430, India.  相似文献   

3.
Production of the bacteriocin enterocin 1146 (E1146) by Enterococcus faecium DPC1146 was studied in batch and continuous fermentation. Growth was strongly inhibited by lactic acid. In batch fermentations maximum E1146 activity (2.8 MBU L−1) was obtained in 9 h with 20 g L−1 glucose. Increase in initial glucose concentration did not lead to a proportional increase in E1146 activity. A simple linear model was found to be adequate to explain the relationship between specific bacteriocin production rate and specific growth rate in batch fermentations with initial glucose concentration higher than 20 g L−1. Maximum bacteriocin activity (2.9–3.2 MBU L−1) was obtained in continuous fermentations at dilution rates between 0.12 and 0.17 h−1 and specific bacteriocin production rate increased linearly with dilution rate. Received 31 July 1996/ Accepted in revised form 01 November 1996  相似文献   

4.
Summary We have studied the stability during fermentation of a hybrid plasmid carrying a Bacillus -amylase gene in Bacillus subtilis. In the absence of antibiotic selection plasmid loss was associated largely with the post-exponential phases of growth and decline. In fermentations containing selective antibiotics, various deleted plasmids were recovered during late stationary phase, regardless of whether the host was rec + or recE. We therefore propose that the plasmid loss observed during late growth in antibiotic-free fermentations is due to deletion events which include the origin of plasmid replication. The structure of the deleted plasmids was determined and the sequences in the vicinity of the end-points analysed. When the deleted plasmids were subjected to further fermentations in the absence of selective antibiotics, they were completely stable.  相似文献   

5.
Silicone oil 20 and 200 cSt, a perfluorocarbon (FC40TM), heptamethylnonane, Kraton, Elvax, and Desmopan were evaluated for their ability to enhance oxygen transfer in stirred tank and airlift reactors (STR and ALR, respectively). None of the vectors tested was either toxic or biodegradable and they exhibited a moderate affinity for oxygen (gas/vector partitioning coefficients K\textg/\textv = C\textg ·C\textv- 1 K_{{{\text{g}}/{\text{v}}}} = C_{\text{g}} \cdot C_{\text{v}}^{- 1} ranging from 3 to 5.1). FC40 was highly volatile, while KratonTM and ElvaxTM exhibited a low thermal stability, which constitutes a serious handicap for their implementation in fermentations. Silicone oil 20 cSt and Desmopan supported the highest oxygen transfer rates under abiotic conditions in both STR and ALR designs, with enhancement factors of up to 90% and 250%, respectively, compared to control tests (deprived of vector). The fact that these vectors showed the highest K g/v proved that, besides the classical selection criteria, the in situ hydrodynamic behavior (which affects K L a) must be considered for vector selection. The use of silicone oil 20 cSt and Desmopan in glucose-supplemented Saccharomyces cerevisiae fermentations resulted in a two- and threefold increase in biomass productions, respectively. The better performance of Desmopan in terms of biomass growth enhancement, together with the absence of the operational problems inherent to the use of liquid vectors (such as intensive foaming, high cost, and difficult solvent recovery), make solid vectors a promising and cost-effective alternative in the future developments of two-phase partitioning bioreactors.  相似文献   

6.
The effect of the dilution rate on biomass and product synthesis in fermentations of glucose, fructose and a commercial mixture of fructooligosaccharides (FOS) by Bifidobacterium longum ATCC 15707 was studied. Kinetic parameters (maximum specific growth rate, Monod constant, maintenance, and yield coefficients) in the mathematical model of the fermentation were estimated from experimental data. In the FOS mixture fermentations, approximately 12% of the total reducing sugars (mainly fructose) in the feed were not metabolized by the bacterium. In fermentations of fructose and the FOS mixture, biomass concentration increased as the dilution rate increased and, once maximum values were reached [3.90 (D=0.20 h–1) and 2.54 g l–1 (D=0.15 h–1), respectively], decreased rapidly as the culture was washed out. Formic acid was detected at low dilution rates in glucose and fructose fermentations. The main products in fermentations of the three carbon sources were lactic and acetic acids. Average values of the molar ratio between acetic and lactic acids of 1.18, 1.21 and 0.83 mol mol–1 were obtained in glucose, fructose and FOS mixture fermentations, respectively. In batch fermentations carried out without pH control this molar ratio was lower than 1.5 only when fructose was used as the carbon source.  相似文献   

7.
Lactic acid was added to batch very high gravity (VHG) fermentations and to continuous VHG fermentations equilibrated to steady state with Saccharomyces cerevisiae. A 53% reduction in colony-forming units (CFU) ml–1 of S. cerevisiae was observed in continuous fermentation at an undissociated lactic acid concentration of 3.44% w/v; and greater than 99.9% reduction was evident at 5.35% w/v lactic acid. The differences in yeast cell number in these fermentations were not due to pH, since batch fermentations over a pH range of 2.5–5.0 did not lead to changes in growth rate. Similar fermentations performed in batch showed that growth inhibition with added lactic acid was nearly identical. This indicates that the apparent high resistance of S. cerevisiae to lactic acid in continuous VHG fermentations is not a function of culture mode. Although the total amount of ethanol decreased from 48.7 g l–1 to 14.5 g l–1 when 4.74% w/v undissociated lactic acid was added, the specific ethanol productivity increased ca. 3.2-fold (from 7.42×10–7 g to 24.0×10–7 g ethanol CFU–1 h–1), which indicated that lactic acid stress improved the ethanol production of each surviving cell. In multistage continuous fermentations, lactic acid was not responsible for the 83% (CFU ml–1) reduction in viable S. cerevisiae yeasts when Lactobacillus paracasei was introduced to the system at a controlled pH of 6.0. The competition for trace nutrients in those fermentations and not lactic acid produced by L. paracasei likely caused the yeast inhibition.  相似文献   

8.
The cellobiohydrolase II (CBHII) of Microbispora bispora, originally cloned in Escherichia coli, was subcloned into Streptomyces lividans using shuttle vectors pSKN 01 and pSKN 02. The enzyme was secreted from Streptomyces, whereas it was intracellular in E. coli. The yields of CBHII produced by S. lividans transformants were 15–20-fold higher than those produced by E. coli transformants. The optimal pH of M. bispora native cellobiohydrolase and the cloned enzyme from S. lividans is 6.5. The thermal and pH stability of CHBII produced in M. bispora, E. coli and S. lividans were compared. Enzyme produced in E. coli was inactivated more rapidly (k = 0.252 min–1 at 90° C; 90% inactivation after 10 min vs. 0.119 min–1 for the others). CBHII was monitored following electrophoretic separation by reaction with a monoclonal antibody. The apparent molecular mass of the protein produced from the S. lividans clone was 93 kDa, the same as that of the native enzyme, but that of the enzyme produced in E. coli was smaller (82 kDa). Correspondence to: P. Hu  相似文献   

9.
An 8.8-kb plasmid (pND302) was identified in Lactococcus lactis spp lactis M71 which encodes cadmium resistance (CdR). Most of the commercial lactococcal strains tested were sensitive to cadmium. Therefore, CdR should provide a useful selectable marker for constructing cloning vectors in lactococci. pND302 was mapped with a number of restriction enzymes and found to contain a unique EcoRI site suitable for cloning. Two E. coli/L. lactis shuttle cloning vectors, pND304 and pND624, were constructed by subcloning of the E. coli plasmids pBR322 and pGEM-7Zf(+) containing a 1.6-kb gene encoding nisin resistance (NisR) of lactococcal origin into the EcoRI site of pND302, separately. The E. coli DNA component of pND624 was removed and the resulting plasmid, pND625, consisted of only lactococcal DNA, expressing NisR and CdR, with two synthetic polylinkers that contain multiple restriction sites for versatile cloning. Both pND302 and pND625 can be transformed by electroporation into L. lactis LMO230 at 103/μg DNA and maintained stably in LMO230. The results indicated that pND302 and pND625 are potential food-grade cloning vectors for lactococci. Received: 27 November 1995 / Accepted: 29 December 1995  相似文献   

10.
11.

Background  

Small-scale microbial fermentations are often assumed to be homogeneous, and oxygen limitation due to inadequate micromixing is often overlooked as a potential problem. To assess the relative degree of micromixing, and hence propensity for oxygen limitation, a new cellular oxygen sensor has been developed. The oxygen responsive E. coli nitrate reductase (nar) promoter was used to construct an oxygen reporter plasmid (pNar-GFPuv) which allows cell-based reporting of oxygen limitation. Because there are greater than 109 cells in a fermentor, one can outfit a vessel with more than 109 sensors. Our concept was tested in high density, lab-scale (5 L), fed-batch, E. coli fermentations operated with varied mixing efficiency – one verses four impellers.  相似文献   

12.
K. Harding  E. C. Cocking 《Protoplasma》1986,130(2-3):153-161
Summary E. coli spheroplasts can be used to deliver DNA vectors into plant protoplasts. The use of fluorescent dyes showed that 25–100% of the protoplast population was associated with 1–9 spheroplasts following incubation with several fusogens. Electron microscopy demonstrated spheroplasts attached to protoplasts via a plasma membrane protrusion after high pH/Ca2+ treatment, but PEG-high pH/Ca2+ promoted endocytosis of spheroplasts into a plasma membrane bounded vesicle. Ultrastructural profiles showed that fusion between spheroplasts and protoplasts did not occur. Immunofluorescence studies detectedE. coli antigens associated with tobacco protoplasts, and after fusogen treatment the antigens were dispersed within the peripheral cytoplasm. The elimination of residual contaminatingE. coli cells from protoplasts was achieved by lysozyme and antibiotic treatment, thus allowing DNA vector assessment in axenic culture.  相似文献   

13.
Shuttle vector pAT18 was transferred by conjugation fromEscherichia coliS17-1 toEnterococcus faecalisOG1RF andEnterococcus faeciumSE34. Transfer was mediated by the transfer functions of plasmid RK2 inE. coliS17-1 and the origin of conjugal transfer (oriT) located on pAT18. TheoriTsequence was then inserted into two plasmids to generate vectors pTEX5235 and pTEX5236. These two vectors cannot replicate in gram-positive bacteria and can be used to make insertion mutants in gram-positive bacteria. An internal sequence from an autolysin gene ofE. faecalisOG1RF was cloned into pTEX5235 and transferred by conjugation fromE. coliS17-1 toE. faecalisOG1RF. The plasmid was found to integrate into the chromosome of OG1RF by a single crossover event, resulting in a disrupted autolysin gene. A cosmid carrying the pyrimidine gene cluster fromE. faecalis,with a transposon insertion inpyrC,was also transferred fromE. coliS17-1 toE. faecalisOG1RF. After selection for the transposon, it was found to have recombined into the recipient chromosome by a double crossover between the cosmid and the chromosome of OG1RF. This resulted in apyrCknockout mutant showing an auxotrophic phenotype.  相似文献   

14.
The insensitivity ofCitrobacter freundii to the E colicins is based on tolerance to colicin E1 and resistance to colicins E2 and E3. Spontaneous colicin A resistant mutants ofC. freundii also lost their colicin E1 receptor function. Sensitivity to colicin E1 can be induced by F′gal + tol + plasmids, thetol A+ gene product of which is responsible for this effect. Receptor function for colicins E2 and E3 is induced by theE. coli F′14bfe + plasmid, which is also able to enhance notably the receptor capacity for colicin E1. Thebfe + gene product ofE. coli, which is responsible for these phenomena, also restores the receptor function for colicin A and E1 in colicin A resistant mutants ofC. freundii. All results show that there is a remarkable difference between theE. coli bfe + gene product and thebfe + gene product ofC. freundii and also between thetol A+ gene products of these strains. The sensitivity to phage BF23 parallels the sensitivity to colicins E2 and E3 and is also induced by the F′14bfe + plasmid.  相似文献   

15.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

16.
Four Enterococcus faecium strains, isolated from honeycombs (C1 and M2d strains) and feral combs (Mori1 and M1b strains) secreted antimicrobial substances active against fourteen different Listeria spp. strains. The antimicrobial compound(s) present in the cell free supernatant were highly thermostable (121°C for 15 min) and inactivated by proteolytic enzymes, but not by α-amylase and lipase, thus suggesting a peptidic nature. Since the structural bacteriocin gene determinants of enterocins A and B were PCR amplified from the four E. faecium isolates, only the bacteriocin produced by strain C1 was further characterized: it showed a broad band of approximately 4.0–7.0 kDa in SDS-PAGE and was bactericidal (4 log decrease) against L. monocytogenes 99/287. L. monocytogenes 99/287R, a clone spontaneously resistant to the enterocin produced by E. avium DSMZ17511 (ex PA1), was not inhibited by the enterocin-like compounds produced by strain C1. However, it was inhibited in mixed culture fermentations by E. faecium C1 and a bacteriostatic effect was observed. The bacteriocin-producer Enterococcus strains were not haemolytic; gelatinase negative and sensitive to vancomycin and other clinically relevant antibiotics.  相似文献   

17.
The nucleotide sequence of a 2.13-kb EcoRI-HindIII, pAMβ1-derived fragment, isolated from the gram-positive cloning vector pHV1431, has been determined and shown to encode two ORFs. ORF H encodes for a protein of 23,930 Da which exhibits substantial homology to bacterial site-specific recombinases, particularly the resolvases of the gram-positive transposons Tn917 (30.3% identity) and Tn552 (31.6% identity) and the clostridial plasmid pIP404 (27.1% identity). The second ORF (I) is incomplete and encodes a polypeptide which has significant homology with Escherichia coli topoisomerase I (26.0% identity). Insertion of either the entire 2.13-kb EcoRI-HindIII fragment or a 0.73-kb EcoRI-DraI subfragment encoding only the resolvase into the pAMβ1-based cloning vector pMTL500E causes a significant enhancement of segregational stability (from 6.5 × 10−2 to 3.0–4.0 × 10−3 plasmid loss per cell per generation). Improved segregational stability is mirrored by a reduction in plasmid polymerization. The introduction of a stop codon into the resolvase coding region negates its ability to promote segregational stability. It is proposed that the identified determinant stabilizes pAMβ1-based vectors in Bacillus subtilis by maintaining the plasmid population in the monomeric state, thereby reducing the chances of producing plasmid-free segregants.  相似文献   

18.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

19.
The effects of varying inoculum age and production scale upon the morphology and viability of Streptomyces clavuligerus were studied by analyzing visible and fluorescent light images acquired throughout pilot-plant and pre-industrial scale fermentations. Changes in production scale reveal that in 5 m3 fermentors, the maximum hyphal area obtained is double the value obtained in 0.5 m3 fermentors. It is probably due to the higher shear stresses acting upon hyphae in the 0.5 m3 fermentor caused by higher tip speeds observed in these. The morphological quantification based on elongation and branching rates allowed fermentations to be pattern classified into distinct physiological time zones namely elongation, branching, fragmentation, etc. The general pattern observed for fermentations inoculated with late exponential phase inocula was similar to the pattern of fermentations run with stationary phase inocula except that both the elongation and branching periods started earlier in the former case. Using the available staining technique and image acquisition system, the viability seemed to be generally high and constant throughout the time course of all the studied fermentations.An erratum to this article can be found at  相似文献   

20.
Whole corn mash fermentations infected with industrially-isolated Brettanomyces yeasts were not affected even when viable Brettanomyces yeasts out-numbered Saccharomyces yeasts tenfold at the onset of fermentation. Therefore, aeration, a parameter that is pivotal to the physiology of Dekkera/Brettanomyces yeasts, was investigated in mixed culture fermentations. Results suggest that aeration strategy plays a significant role in Dekkera/Brettanomyces-mediated inhibition of fuel alcohol fermentations. Although growth of Saccharomyces cerevisiae was not impeded, mixed culture fermentations aerated at rates of ≥20 ml air l−1 mash min−1 showed decreased ethanol yields and an accumulation of acetic acid. The importance of aeration was examined further in combination with organic acid(s). Growth of Saccharomyces occurred more rapidly than growth of Brettanomyces yeasts in all conditions. The combination of 0.075% (w/v) acetic acid and contamination with Brettanomyces TK 1404W did not negatively impact the final ethanol yield under fermentative conditions. Aeration, however, did prove to be detrimental to final ethanol yields. With the inclusion of aeration in the control condition (no organic acid stress) and in each fermentation containing organic acid(s), the final ethanol yields were decreased. It was therefore concluded that aeration strategy is the key parameter in regards to the negative effects observed in fuel alcohol fermentations infected with Dekkera/Brettanomyces yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号