首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) are formed upon incomplete reduction of molecular oxygen (O2) as an inevitable consequence of mitochondrial metabolism. Because ROS can damage biomolecules, cells contain elaborate antioxidant defense systems to prevent oxidative stress. In addition to their damaging effect, ROS can also operate as intracellular signaling molecules. Given the fact that mitochondrial ROS appear to be only generated at specific sites and that particular ROS species display a unique chemistry and have specific molecular targets, mitochondria-derived ROS might constitute local regulatory signals. The latter would allow individual mitochondria to auto-regulate their metabolism, shape and motility, enabling them to respond autonomously to the metabolic requirements of the cell. In this review we first summarize how mitochondrial ROS can be generated and removed in the living cell. Then we discuss experimental strategies for (local) detection of ROS by combining chemical or proteinaceous reporter molecules with quantitative live cell microscopy. Finally, approaches involving targeted pro- and antioxidants are presented, which allow the local manipulation of ROS levels.  相似文献   

2.
We investigated the presence of a key feature of human word comprehension in a five year old Border Collie: the generalization of a word referring to an object to other objects of the same shape, also known as shape bias. Our first experiment confirmed a solid history of word learning in the dog, thus making it possible for certain object features to have become central in his word comprehension. Using an experimental paradigm originally employed to establish shape bias in children and human adults we taught the dog arbitrary object names (e.g. dax) for novel objects. Two experiments showed that when briefly familiarized with word-object mappings the dog did not generalize object names to object shape but to object size. A fourth experiment showed that when familiarized with a word-object mapping for a longer period of time the dog tended to generalize the word to objects with the same texture. These results show that the dog tested did not display human-like word comprehension, but word generalization and word reference development of a qualitatively different nature compared to humans. We conclude that a shape bias for word generalization in humans is due to the distinct evolutionary history of the human sensory system for object identification and that more research is necessary to confirm qualitative differences in word generalization between humans and dogs.  相似文献   

3.
To characterize water binding to proteins, which is fundamental to protein folding, stability and activity, the relationships of 10,837 bound water positions to protein surface shape and residue type were analyzed in 56 high-resolution crystallographic structures. Fractal atomic density and accessibility algorithms provided an objective characterization of deep grooves in solvent-accessible protein surfaces. These deep grooves consistently had approximately the diameter of one water molecule, suggesting that deep grooves are formed by the interactions between protein atoms and bound water molecules. Protein surface topography dominates the chemistry and extent of water binding. Protein surface area within grooves bound three times as many water molecules as non-groove surface; grooves accounted for one-quarter of the total surface area yet bound half the water molecules. Moreover, only within grooves did bound water molecules discriminate between different side-chains. In grooves, main-chain surface was as hydrated as that of the most hydrophilic side-chains, Asp and Glu, whereas outside grooves all main and side-chains bound water to a similar, and much decreased, extent. This identification of the interdependence of protein surface shape and hydration has general implications for modelling and prediction of protein surface shape, recognition, local folding and solvent binding.  相似文献   

4.
Geometric morphometrics comprises tools for measuring and analyzing shape as captured by an entire set of landmark configurations. Many interesting questions in evolutionary, genetic, and developmental research, however, are only meaningful at a local level, where a focus on ??parts?? or ??traits?? takes priority over properties of wholes. To study variational properties of such traits, current approaches partition configurations into subsets of landmarks which are then studied separately. This approach is unable to fully capture both variational and spatial characteristics of these subsets because interpretability of shape differences is context-dependent. Landmarks omitted from a partition usually contain information about that partition??s shape. We present an interpolation-based approach that can be used to model shape differences at a local, infinitesimal level as a function of information available globally. This approach belongs in a large family of methods that see shape differences as continuous ??fields?? spanning an entire structure, for which landmarks serve as reference parameters rather than as data. We show, via analyses of simulated and real data, how interpolation models provide a more accurate representation of regional shapes than partitioned data. A key difference of this interpolation approach from current morphometric practice is that one must assume an explicit interpolation model, which in turn implies a particular kind of behavior of the regions between landmarks. This choice presents novel methodological challenges, but also an opportunity to incorporate and test biomechanical models that have sought to explain tissue-level processes underlying the generation of morphological shape.  相似文献   

5.
A pattern recognition algorithm for the alignment of drug-like molecules has been implemented. The method is based on the calculation of quantum mechanical derived local properties defined on a molecular surface. This approach has been shown to be very useful in attempting to derive generalized, non-atom based representations of molecular structure. The visualization of these surfaces is described together with details of the methodology developed for their use in molecular overlay and similarity calculations. In addition, this paper also introduces an additional local property, the local curvature (C L), which can be used together with the quantum mechanical properties to describe the local shape. The method is exemplified using some problems representing common tasks encountered in molecular similarity. Figure Molecular surfaces for Lorazepam (left) and Diazepam (right)  相似文献   

6.
The clinical applications of therapeutic enzymes are often limited due to their immunogenicity. B-cell epitope removal is an effective approach to solve this obstacle. The identification of hot spot epitopic residues is a critical step in the removal of protein B-cell epitope. Hereof, computational approaches are a suitable alternative to costly and labor-intensive experimental approaches. Arginine deiminase, a Mycoplasma arginine-catabolizing enzyme, is in the clinical trial for treating arginine auxotrophic cancers, especially hepatocellular carcinomas and melanomas through depleting plasma arginine and causing cell starvation. In this study, arginine deiminase from Mycoplasma hominis (MhADI) was computationally analyzed for recognizing and locating its immune-reactive regions. The 3D structure of the bioactive form of MhADI was modeled. The B-cell epitope mapping of protein was performed using various servers with different algorithms. Six segments: 31–40, 48–55, 131–140, 196–206, 294–314, and 331–344 were predicted to be the consensus immunogenic regions. The modification of epitopic hot spot residue was performed to reduce immune-reactiveness. The hot spot residue was selected considering a high B-cell epitope score, convexity index, surface accessibility, flexibility, and hydrophilicity. The structure stability of native and mutant proteins was evaluated through molecular dynamics simulation. The E304L mutein was suggested as a lower antigenic and stable enzyme derivative.  相似文献   

7.
8.
Footprinting is one of the simplest and most accurate approaches to investigate structure and interaction of biopolymers. It is based on the more difficult accessibility of intra- and intermolecular contacts for external damaging agents. According to this method, one end of polymer molecules is labeled before a sample is incubated with a damaging agent. The distribution of split products is used to conclude on the accessibility of different polymer regions under specific conditions. A variety of enzymatic and chemical splitting agents are used for footprinting. Currently, the highest temporal and spatial resolution without profound specificity to a nucleotide sequence can be reached with the use of hydroxyl radicals. A new variant of this approach, which suggests the use of DNA fluorescent labeling together with the present-day quantitative analysis, will allow extending the method’s boundaries.  相似文献   

9.
The review is devoted to tritium planigraphy and its applications in solving a broad scope of problems in modern molecular and physicochemical biology. The method is based on nonselective substitution of tritium for hydrogen in the hydrocarbon parts of target molecules. It furnishes information on the steric accessibility of the components of a system under study (macromolecule within a complex amino acid residues, and even separate atomic groupings in a macromolecule) that characterizes the structure of the entire object. The technique is applicable to specimens in different phase states and has no limitations in respect of the target molecular mass. Tritium planigraphy is especially important in the cases when the biological macromolecules cannot be examined by the conventional methods (X-ray analysis and NMR spectroscopy). The review summarizes the studies of protein accessible surface and spatial arrangement, and outlines the approaches to modeling the protein 3D structure and probing into the spatial organization of theEscherichia coli ribosome and virus particles.  相似文献   

10.
Understanding the mechanisms of the interaction between a protein surface and its outer molecular environment is of primary relevance for the rational design of new drugs and engineered proteins. Protein surface accessibility is emerging as a new dimension of Structural Biology, since NMR methods have been developed to follow how molecules, even those different from physiological ligands, preferentially approach specific regions of the protein surface. Hen egg-white lysozyme, a paradigmatic example of the state of the art of protein structure and dynamics, has been selected as a model system to study protein surface accessibility. Bound water and soluble spin-labels have been used to investigate the interaction of this enzyme, both free and bound to the inhibitor (NAG)(3), with its molecular environment. No tightly bound water molecules were found inside the enzyme active site, which, conversely, appeared as the most exposed to visits from the soluble paramagnetic probe TEMPOL. From the presented set of data, an integrated view of lysozyme surface accessibility towards water and TEMPOL molecules is obtained.  相似文献   

11.
The accessibility of large substrates to buried enzymatic active sites is dependent upon the utilization of proteinaceous channels. The necessity of these channels in the case of small substrates is questionable because diffusion through the protein matrix is often assumed. Copper amine oxidases contain a buried protein-derived quinone cofactor and a mononuclear copper center that catalyze the conversion of two substrates, primary amines and molecular oxygen, to aldehydes and hydrogen peroxide, respectively. The nature of molecular oxygen migration to the active site in the enzyme from Hansenula polymorpha is explored using a combination of kinetic, x-ray crystallographic, and computational approaches. A crystal structure of H. polymorpha amine oxidase in complex with xenon gas, which serves as an experimental probe for molecular oxygen binding sites, reveals buried regions of the enzyme suitable for transient molecular oxygen occupation. Calculated O(2) free energy maps using copper amine oxidase crystal structures in the absence of xenon correspond well with later experimentally observed xenon sites in these systems, and allow the visualization of O(2) migration routes of differing probabilities within the protein matrix. Site-directed mutagenesis designed to block individual routes has little effect on overall k(cat)/K(m) (O(2)), supporting multiple dynamic pathways for molecular oxygen to reach the active site.  相似文献   

12.
Singh S  Dhar DW  Gupta RK 《Mikrobiologiia》2011,80(3):403-410
Abstract-Thirty cyanobacterial strains of Calothrix (family Rivulariaceae) isolated from diverse geographical regions of India were analyzed using morphological and molecular approaches. Most of the isolates were planktonic while some grew benthically. Significant differences were observed with regard to the shape and size of the vegetative cells, heterocysts, and akinetes. Analyses of molecular polymorphisms using Restriction Fragment Length Polymorphisms (RFLP) of 16S rRNA genes with the reference strain led to unambiguous differentiation of the isolates as well as understanding of their genetic relationships.  相似文献   

13.
A new methodology for the conformational modelling of biomolecular systems (1) is extended to local deformations of chain molecules and to flexible molecular rings. It is shown that these two cases may be reduced to considering an equivalent molecular model with a regular tree-like topology. A simple procedure is developed to analyze any flexible rings (the five- and six-membered sugar rings of carbohydrates and nucleic acids, in particular) and local deformation regions by energy minimization. Dynamic equations are also derived for such molecular systems. As a result, a unified approach is proposed for the efficient energy minimization and simulation of dynamic behavior of multimolecular systems having any set of variable internal coordinates, local deformation regions and cycles. Advantages and domains of applicability of the approach are discussed.  相似文献   

14.
The province of Papua, Indonesia has one of the fastest growing rates of HIV infection in Asia. Within volatile political conditions, HIV has reached generalized epidemic status for indigenous Papuans. This article explores the merits of using the concept of local biologies as an analytic tool to assess the range of factors which affect a local pattern of untreated HIV and rapid onset of AIDS. A research team conducted 32 in-depth interviews with HIV-positive indigenous persons and 15 interviews with health care workers in urban and peri-urban sites in the central highlands region. The results show fear of gossip and stigmatization, regional political conditions and gaps in care interweave to create local biological conditions of evasion of care and rapid onset of AIDS. The normative emphasis in contemporary scholarship on stigma as shaping subjective responses to HIV needs to be complemented by a full assessment of the physiological impact of health services, and the ways political conditions trickle down and mediate local biological patterns. The concept of local biologies is highly effective for explaining the full scope of possible factors affecting the intersection of social and physical realms for HIV-positive persons.  相似文献   

15.
Abstract

A new methodology for the conformational modelling of biomolecular systems (1) is extended to local deformations of chain molecules and to flexible molecular rings. It is shown that these two cases may be reduced to considering an equivalent molecular model with a regular tree-like topology. A simple procedure is developed to analyze any flexible rings (the five- and six-membered suguar rings of carbohydrates and nucleic acids, in particular) and local deformation regions by energy minimization. Dynamic equations are also derived for such molecular systems. As a result, a unified approach is proposed for the efficient energy minimization and simulation of dynamic behavior of multimolecular systems having any set of variable internal coordinates, local deformation regions and cycles. Advantages and domains of applicability of the approach are discussed.  相似文献   

16.
17.
18.
Thirty cyanobacterial strains of Calothrix (family Rivulariaceae) isolated from diverse geographical regions of India were analyzed using morphological and molecular approaches. Most of the isolates were planktonic while some grew benthically. Significant differences were observed with regard to the shape and size of the vegetative cells, heterocysts, and akinetes. Analyses of molecular polymorphisms using Restriction Fragment Length Polymorphisms (RPLP) of 16S rRNA genes with the reference strain led to unambiguous differentiation of the isolates as well as understanding of their genetic relationships.  相似文献   

19.
20.
CIRCUMSTELLAR AND INTERSTELLAR SYNTHESIS OF ORGANIC MOLECULES   总被引:1,自引:0,他引:1  
We review the formation and evolution of complex circumstellar and interstellar molecules. A number of promising chemical routes are discussed which may lead to the formation of polycyclic aromatic hydrocarbon molecules, fullerenes, and unsaturated hydrocarbon chains in the outflows from stars. Some of the problems with these chemical schemes are pointed out as well. We also review the role of grains in the formation of complex molecules in interstellar molecular clouds. This starts with the formation of simple molecules in an ice grain mantle. UV photolysis and/or thermal polymerization can convert some of these simple molecules into more complex polymeric structures. Some of these species may be released to the gas phase, particularly in the warm regions around newly formed stars. Methanol and formaldehyde seem to play an important role in this drive towards molecular complexity and their chemistry is traced in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号