首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori secretes a vacuolating toxin (VacA) that can assemble into water-soluble oligomeric complexes and insert into membranes to form anion-selective channels. Previous studies have described multiple types of oligomeric VacA structures, including single-layered astral arrays, bilayered forms, and two-dimensional crystalline arrays. In the current study, vitrified VacA complexes were examined by cryo-negative staining electron microscopy, views of the different oligomeric structures in multiple orientations were classified and analyzed, and three-dimensional models of the bilayered forms of VacA were constructed with a resolution of about 19 angstroms. These bilayered forms of VacA have a "flower"-like structure, consisting of a central ring surrounded by symmetrically arranged peripheral "petals." Further structural insights were obtained by analyzing a mutant form of VacA (VacADelta6-27), which lacks a unique amino-terminal hydrophobic segment and is defective in the capacity to form membrane channels. Bilayered oligomeric complexes formed by wild-type VacA contained a visible density within the central ring, whereas bilayered complexes formed by VacADelta6-27 lacked this density. These results indicate that deletion of the VacA amino-terminal hydrophobic region causes a structural alteration in the central ring within VacA oligomers, and suggest that the central ring plays an important role in the process by which VacA forms membrane channels.  相似文献   

2.
The VacA toxin secreted by Helicobacter pylori is considered to be an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. VacA monomers self-assemble into water-soluble oligomeric structures and can form anion-selective membrane channels. The goal of this study was to characterize VacA-VacA interactions that may mediate assembly of VacA monomers into higher order structures. We investigated potential interactions between two domains of VacA (termed p-33 and p-55) by using a yeast two-hybrid system. p-33/p-55 interactions were detected in this system, whereas p-33/p-33 and p-55/p-55 interactions were not detected. Several p-33 proteins containing internal deletion mutations were unable to interact with wild-type p-55 in the yeast two-hybrid system. Introduction of these same deletion mutations into the H. pylori vacA gene resulted in secretion of mutant VacA proteins that failed to assemble into large oligomeric structures and that lacked vacuolating toxic activity for HeLa cells. Additional mapping studies in the yeast two-hybrid system indicated that only the N-terminal portion of the p-55 domain is required for p-33/p-55 interactions. To characterize further p-33/p-55 interactions, we engineered an H. pylori strain that produced a VacA toxin containing an enterokinase cleavage site located between the p-33 and p-55 domains. Enterokinase treatment resulted in complete proteolysis of VacA into p-33 and p-55 domains, which remained physically associated within oligomeric structures and retained vacuolating cytotoxin activity. These results provide evidence that interactions between p-33 and p-55 domains play an important role in VacA assembly into oligomeric structures.  相似文献   

3.
Helicobacter pylori secretes an 88-kDa vacuolating cytotoxin (VacA) that may contribute to the pathogenesis of peptic ulcer disease and gastric cancer. VacA cytotoxic activity requires assembly of VacA monomers into oligomeric structures, formation of anion-selective membrane channels, and entry of VacA into host cells. In this study, we analyzed the functional properties of recombinant VacA fragments corresponding to two putative VacA domains (designated p33 and p55). Immunoprecipitation experiments indicated that these two domains can interact with each other to form protein complexes. In comparison to the individual VacA domains, a mixture of the p33 and p55 proteins exhibited markedly enhanced binding to the plasma membrane of mammalian cells. Furthermore, internalization of the VacA domains was detected when cells were incubated with the p33/p55 mixture but not when the p33 and p55 proteins were tested individually. Incubation of cells with the p33/p55 mixture resulted in cell vacuolation, whereas the individual domains lacked detectable cytotoxic activity. Interestingly, sequential addition of p55 followed by p33 resulted in VacA internalization and cell vacuolation, whereas sequential addition in the reverse order was ineffective. These results indicate that both the p33 and p55 domains contribute to the binding and internalization of VacA and that both domains are required for vacuolating cytotoxic activity. Reconstitution of toxin activity from two separate domains, as described here for VacA, has rarely been described for pore-forming bacterial toxins, which suggests that VacA is a pore-forming toxin with unique structural properties.  相似文献   

4.
In this study, we describe the ultrastructural changes associated with acid activation of Helicobacter pylori vacuolating cytotoxin (VacA). Purified VacA molecules imaged by deep-etch electron microscopy form ~30-nm hexagonal “flowers,” each composed of an ~15-nm central ring surrounded by six ~6-nm globular “petals.” Upon exposure to acidic pH, these oligomeric flowers dissociate into collections of up to 12 teardrop-shaped subunits, each measuring ~6 × 14 nm. Correspondingly, glycerol density gradient centrifugation shows that at neutral pH VacA sediments at ~22 S, whereas at acidic pH it dissociates and sediments at ~5 S. Immunoblot and EM analysis of the 5-S material demonstrates that it represents ~90-kD monomers with 6 × 14–nm “teardrop” morphology. These data indicate that the intact VacA oligomer consists of 12 ~90-kD subunits assembled into two interlocked six-membered arrays, overlap of which gives rise to the flower-like appearance. Support for this interpretation comes from EM identification of small numbers of relatively “flat” oligomers composed of six teardrop-shaped subunits, interpreted to be halves of the complete flower. These flat forms adsorb to mica in two different orientations, corresponding to hexameric surfaces that are either exposed or sandwiched inside the dodecamer, respectively. This view of VacA structure differs from a previous model in which the flowers were interpreted to be single layers of six monomers and the flat forms were thought to be proteolysed flowers. Since acidification has been shown to potentiate the cytotoxic effects of VacA, the present results suggest that physical disassembly of the VacA oligomer is an important feature of its activation.  相似文献   

5.
Helicobacter pylori, a gram-negative bacterium associated with gastritis, peptic ulceration, and gastric adenocarcinoma in humans, secretes a protein toxin, VacA, that causes vacuolar degeneration of epithelial cells. Several different families of H. pylori vacA alleles can be distinguished based on sequence diversity in the "middle" region (i.e., m1 and m2) and in the 5' end of the gene (i.e., s1 and s2). Type s2 VacA toxins contain a 12-amino-acid amino-terminal hydrophilic segment, which is absent from type s1 toxins. To examine the functional properties of VacA toxins containing this 12-amino-acid segment, we analyzed a wild-type s1/m1 VacA and a chimeric s2/m1 VacA protein. Purified s1/m1 VacA from H. pylori strain 60190 induced vacuolation in HeLa and Vero cells, whereas the chimeric s2/m1 toxin (in which the s1 sequence of VacA from strain 60190 was replaced with the s2 sequence from strain Tx30a) lacked detectable cytotoxic activity. Type s1/m1 VacA from strain 60190 formed membrane channels in a planar lipid bilayer assay at a significantly higher rate than did s2/m1 VacA. However, membrane channels formed by type s1 VacA and type s2 VacA proteins exhibited similar anion selectivities (permeability ratio, P(Cl)/P(Na) = 5). When an equimolar mixture of the chimeric s2/m1 toxin and the wild-type s1/m1 toxin was added to HeLa cells, the chimeric toxin completely inhibited the activity of the s1/m1 toxin. Thus, the s2/m1 toxin exhibited a dominant-negative phenotype similar to that of a previously described mutant toxin, VacA-(Delta6-27). Immunoprecipitation experiments indicated that both s2/m1 VacA and VacA-(Delta6-27) could physically interact with a c-myc epitope-tagged s1/m1 VacA, which suggests that the dominant-negative phenotype results from the formation of heterooligomeric VacA complexes with defective functional activity. Despite detectable differences in the channel-forming activities and cytotoxic properties of type s1 and type s2 VacA proteins, the conservation of type s2 sequences in many H. pylori isolates suggests that type s2 VacA proteins retain an important biological activity.  相似文献   

6.
In its mature form, the VacA toxin of Helicobacter pylori is a 95-kDa protein which is released from the bacteria as a low-activity complex. This complex can be activated by low-pH treatment that parallels the activity of the toxin on target cells. VacA has been previously shown to insert itself into lipid membranes and to induce anion-selective channels in planar lipid bilayers. Binding of VacA to lipid vesicles and its ability to induce calcein release from these vesicles were systematically compared as a function of pH. These two phenomena show a different pH-dependence, suggesting that the association with the lipid membrane may be a two-step mechanism. The secondary and tertiary structure of VacA as a function of pH and the presence of lipid vesicles were investigated by Fourier-transform infrared spectroscopy. The secondary structure of VacA is identical whatever the pH and the presence of a lipid membrane, but the tertiary structure in the presence of a lipid membrane is dependent on pH, as evidenced by H/D exchange.  相似文献   

7.
8.
VacA is a unique protein toxin secreted by the human pathogen Helicobacter pylori. At a neutral pH, the cytotoxin self-associates into predominantly dodecameric complexes. In this report, we show that at an acidic pH, VacA forms anion selective channels in planar phospholipid bilayers. Similar to several other chloride channels, the VacA channel exhibits a moderate selectivity for anions over cations (P(Cl):P(Na) = 4.2:1), inhibition by the blocker 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and a permeability sequence, SCN- > I- > Br- > Cl- > F, consistent with a 'weak field strength' binding site for the permeant anion. Single channel recordings reveal rapid transitions (486 s(-1)) between the closed state and a single open state of 24 pS (+60 mV, 1.5 M NaCl). Evaluation of the rate of increase in macroscopic current as well as atomic force microscopy suggest that this VacA channel is a hexamer, formed by the assembly of membrane-bound monomers. Not only are these VacA channels likely to play an important role in the pathological activity of this toxin, but they may also serve as a model system to further investigate the mechanism of anion selectivity in general.  相似文献   

9.
Ordered arrays of thin filaments (65 A diameter) along with other apparently random arrangements of thin and thick filaments (100–200 A diameter) are observed in contracted guinea pig taenia coli rapidly fixed in glutaraldehyde. The thin-filament arrays vary from a few to more than 100 filaments in each array. The arrays are scattered among isolated thin and thick filaments. Some arrays are regular such as hexagonal; other arrays tend to be circular. However, few examples of rosettes with regular arrangements of thin filaments surrounding thick filaments are seen. Optical transforms of electron micrographs of thin-filament arrays give a nearest-neighbor spacing of the thin filaments in agreement with the "actin" filament spacing from x-ray diffraction experiments. Many thick filaments are closely associated with thin-filament arrays. Some thick filaments are hollow circles, although triangular shapes are also found. Thin-filament arrays and thick filaments extend into the cell for distances of at least a micron. Partially relaxed taenia coli shows thin-filament arrays but few thick filaments. The suggestion that thick filaments aggregate prior to contraction and disaggregate during relaxation is promoted by these observations. The results suggest that a sliding filament mechanism operates in smooth muscle as well as in striated muscle.  相似文献   

10.
Cells in culture exposed to cytochalasin D (CD) rapidly undergo a long-sustained tonic contraction. Coincident with this contracture the thin microfilaments of the cortex become compacted into feltlike masses. The ravelled filaments of these masses remain actinlike and bind heavy meromyosin; they are not disrupted or disaggregated, but rather, appear to represent a contracted state of the microfilament apparatus of the cell cortex. On continued exposure to CD, ‘myoid’ bundles, containing thick, dense filaments, and larger fusiform or ribbonlike, putatively myosinoid, aggregates may appear. These appearances are interpreted as consequences of a state of hypercontraction without relaxation induced by CD. They do not occur in CD-treated cells prevented from contracting by inhibitors of energy metabolism, and are readily reversible on withdrawal of CD. Extensive ordered arrays of thin microfilaments develop in cells which are reextending during early recovery.  相似文献   

11.
《Journal of molecular biology》2019,431(10):1956-1965
Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.  相似文献   

12.
Helicobacter pylori releases VacA both as free-soluble and as outer membrane vesicle (OMV)-associated toxin. In this study, we investigated the amount of VacA released in each of the two forms and the role of each form in VacA-induced cell vacuolation in vitro. We found that: (1) free-soluble toxin accounted for about 75% of released VacA, while the remaining 25% was OMV-associated; (2) although OMV-associated VacA caused a statistically significant vacuolation, virtually all the vacuolating activity of a H. pylori broth culture filtrate was due to free-soluble VacA. While it is widely accepted that OMVs may represent an important vehicle for delivering virulence factors to the gastric mucosa, our results suggest that OMV-associated VacA could play a pathobiological role different from that of free-soluble toxin. This conclusion fits with mounting evidence that VacA exerts a large pattern of pathobiological effects among which cell vacuolation might not be the main one.  相似文献   

13.
The Helicobacter pylori vacuolating cytotoxin (VacA) induces degenerative vacuolation of sensitive mammalian cell lines. Although evidence is accumulating that VacA enters cells and functions from an intracellular site of action, the biochemical mechanism by which VacA mediates cellular vacuolation has not been established. In this study, we used functional complementation and biochemical approaches to probe the structure of VacA. VacA consists of two discrete fragments, p37 and p58, that are both required for vacuolating activity. Using a transient transfection system, we expressed genetically modified forms of VacA and identified mutations in either p37 or p58 that inactivated the toxin. VacA with an inactivating single-residue substitution in the p37 domain [VacA (P9A)] functionally complemented a second mutant form of VacA with an inactivating two-residue deletion in the p58 domain [VacA Delta(346-347)]. VacA (P9A) and VacA Delta(346-347) also co-immunoprecipitated from vacuolated monolayers, supporting the hypothesis that these two inactive mutants associate directly to function in trans. p37 and p58 interact directly when expressed as separate fragments within HeLa cells, suggesting that p37-p58 inter-actions facilitate VacA monomer associations. Collectively, these results support a model in which the active form of VacA requires assembly into a complex of two or more monomers to elaborate toxin function.  相似文献   

14.
M Brouwer  B Serigstad 《Biochemistry》1989,28(22):8819-8827
Hemocyanin of the horseshoe crab Limulus polyphemus is composed of 48 oxygen-binding subunits, which are arranged in eight hexameric building blocks. Allosteric interactions in this oligomeric protein have been examined by measurement of high-precision oxygen-equilibrium curves, using an automated Imai cell. Several models were compared in numerical analysis of the data. A number of conclusions can be drawn with confidence. (1) Oxygen binding by Limulus hemocyanin cannot satisfactorily be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118] for allosteric transitions with either the hexamer or dodecamer as the allosteric unit. (2) Of the models tested, the data sets can be best described by an extended MWC model that allows for an equilibrium, within the 48-subunit ensemble, between cooperative hexamers and cooperative dodecamers. The model invokes T and R states for both hexamers (T6 and R6) and dodecamers (T12 and R12). Allosteric effectors modulate oxygen affinity and cooperativity by affecting the R to T equilibria within hexamers and dodecamers and by shifting the equilibria between hexamers and dodecamers. (3) The fitted model parameters show that under most conditions the intersubunit contacts within T-state hexamers are more constrained than those within T-state dodecamers. (4) The oxygen affinities of the hexameric and dodecameric R states are the same, but under all conditions examined the conformation of the fully oxygenated molecule is that of the dodecameric R state. (5) Between pH 7.4 and pH 8.5 the dodecameric T state has a higher affinity for oxygen than the hexameric T state, allowing for "T-state cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The steady-state level of the resident endoplasmic reticulum protein, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), is regulated, in part, by accelerated degradation in response to excess sterols or mevalonate. Previous studies of a chimeric protein (HM-Gal) composed of the membrane domain of HMGR fused to Escherichia coli beta-galactosidase, as a replacement of the normal HMGR cytosolic domain, have shown that the regulated degradation of this chimeric protein, HM-Gal, is identical to that of HMGR (Chun, K. T., Bar-Nun, S., and Simoni, R. D. (1990) J. Biol. Chem. 265, 22004-22010; Skalnik, D. G., Narita, H., Kent, C., and Simoni, R. D. (1988) J. Biol. Chem. 263, 6836-6841). Since the cytosolic domain can be replaced with beta-galactosidase without effect on regulated degradation, it has been assumed that the cytosolic domain was not important to this process and also that the membrane domain of HMGR was both necessary and sufficient for regulated degradation. In contrast to our previous results with HM-Gal, we observed in this study that replacement of the cytosolic domain of HMGR with various heterologous proteins can have an effect on the regulated degradation, and the effect correlates with the oligomeric state of the replacement cytosolic protein. Chimeric proteins that are oligomeric in structure are relatively stable, and those that are monomeric are unstable. To test the hypothesis that the oligomeric state of the cytosolic domain of HMGR influences degradation, we use an "inducible" system for altering the oligomeric state of a protein in vivo. Using a chimeric protein that contains the membrane domain of HMGR fused to three copies of FK506-binding protein 12, we were able to induce oligomerization by addition of a "double-headed" FK506-like "dimerizer" drug (AP1510) and to monitor the degradation rate of both the monomeric form and the drug-induced oligomeric form of the protein. We show that this chimeric protein, HM-3FKBP, is unstable in the monomeric state and is stabilized by AP1510-induced oligomerization. We also examined the degradation rate of HMGR as a function of concentrations within the cell. HMGR is a functional dimer; therefore, its oligomeric state and, we predict, its degradation rate should be concentration-dependent. We observed that it is degraded more rapidly at lower concentrations.  相似文献   

16.
Perfringolysin O (PFO), a soluble toxin secreted by the pathogenic Clostridium perfringens, forms large homo-oligomeric pore complexes comprising up to 50 PFO molecules in cholesterol-containing membranes. In this study, electron microscopy (EM) and single-particle image analysis were used to reconstruct two-dimensional (2D) projection maps from images of oligomeric PFO prepore and pore complexes formed on cholesterol-rich lipid layers. The projection maps are characterized by an outer and an inner ring of density peaks. The outer rings of the prepore and pore complexes are very similar; however, the protein densities that make up the inner ring of the pore complex are more intense and discretely resolved than they are for the prepore complex. The change in inner-ring protein density is consistent with a mechanism in which the monomers within the prepore complex make a transition from a partially disordered state to a more ordered transmembrane beta-barrel in the pore complex. Finally, the orientation of the monomers within the oligomeric complexes was determined by visualization of streptavidin (SA) molecules bound to biotinylated cysteine-substituted residues predicted to face either the inner or outer surface of the oligomeric pore complex. This study provides an unprecedented view of the conversion of the PFO prepore to pore complex.  相似文献   

17.
Cells exposed to Helicobacter pylori toxin VacA develop large vacuoles that originate from massive swelling of membranous compartments of late stages of the endocytic pathway. To determine if the toxin is active from the cell cytosol, cells were either microinjected with toxin or transfected with plasmids encoding VacA. Both procedures cause formation of intracellular vacuoles. Cytosolic localization of the toxin was assessed by indirect immunofluorescence with specific antibodies and by expression of an active green fluorescence protein (GFP)–VacA chimera. Vacuoles induced by internally produced VacA are morphologically and functionally identical to those induced by externally added toxin. It is concluded that VacA is a toxin acting intracellularly by altering a cytosol-exposed target, possibly involved in the control of membrane trafficking.  相似文献   

18.
Helicobacter pylori secretes a toxin, VacA, that can form anion-selective membrane channels. Within a unique amino-terminal hydrophobic region of VacA, there are three tandem GXXXG motifs (defined by glycines at positions 14, 18, 22, and 26), which are characteristic of transmembrane dimerization sequences. The goals of the current study were to investigate whether these GXXXG motifs are required for membrane channel formation and cytotoxicity and to clarify the role of membrane channel formation in the biological activity of VacA. Six different alanine substitution mutations (P9A, G13A, G14A, G18A, G22A, and G26A) were introduced into the unique hydrophobic region located near the amino terminus of VacA. The effects of these mutations were first analyzed using the TOXCAT system, which permits the study of transmembrane oligomerization of proteins in a natural membrane environment. None of the mutations altered the capacity of ToxR-VacA-maltose-binding protein fusion proteins to insert into a membrane, but G14A and G18A mutations markedly diminished the capacity of the fusion proteins to oligomerize. We then introduced the six alanine substitution mutations into the vacA chromosomal gene of H. pylori and analyzed the properties of purified mutant VacA proteins. VacA-G13A, VacA-G22A, and VacA-G26A induced vacuolation of HeLa cells, whereas VacA-P9A, VacA-G14A, and VacA-G18A did not. Subsequent experiments examined the capacity of each mutant toxin to form membrane channels. In a planar lipid bilayer assay, VacA proteins containing G13A, G22A, and G26A mutations formed anion-selective membrane channels, whereas VacA proteins containing P9A, G14A, and G18A mutations did not. Similarly, VacA-G13A, VacA-G22A, and VacA-G26A induced depolarization of HeLa cells, whereas VacA-P9A, VacA-G14A, and VacA-G18A did not. These data indicate that an intact proline residue and an intact G(14)XXXG(18) motif within the amino-terminal hydrophobic region of VacA are essential for membrane channel formation, and they also provide strong evidence that membrane channel formation is essential for VacA cytotoxicity.  相似文献   

19.
The Helicobacter pylori toxin VacA induces intracellular vacuolation and plays an essential role in H. pylori-related diseases. The mature exotoxin is divided into two domains, P37 and P58. A soluble form of VacA fused with GST was expressed in Escherichia coli. Although the soluble fusion lacked vacuolating activity after cleavage by thrombin, it had a binding affinity similar to that of the native VacA. Moreover, it blocked the vacuolating activity induced by the native toxin. Different C-terminal truncated fusions were generated (GST-P72, GST-P53, and GST-P37) and were also produced in a soluble form. A significantly reduced binding activity was seen for GST-P72 and nearly no specific association was detected for GST-P37. Our results suggested that the whole P58 fragment contributed to the cell binding activity in HeLa cells, particularly in the C-terminal approximately 100-residue region.  相似文献   

20.
Heat-stress granules (HSG) are highly ordered, cytoplasmic chaperone complexes found in all heat-stressed plant cells. We have developed an experimental system involving expression of cytosolic class I and class II small heat-stress proteins (Hsps) of pea, Arabidopsis and tomato in tobacco protoplasts to study the structural prerequisites for the assembly of HSG or HSG-like complexes. Class I and class II small Hsps formed class-specific dodecamers of 210-280 kDa, which, upon heat stress, were incorporated into HSG complexes. Interestingly, class II dodecamers alone could form HSG-like complexes (auto-aggregation), whereas class I dodecamers could do so only in the presence of class II proteins (recruitment). By analysing C-terminal deletion forms of Hsp17 class II, we obtained evidence that the intact C-terminus is critical for the oligomerization state, for the heat-stress-induced auto-aggregation and for recruitment of class I proteins. The class-specific formation of dimers as a prerequisite for oligomerization was analysed by the yeast two-hybrid system. In the presence of the endogenous (tobacco) set of heat-stress-induced proteins, all heterologous class I and class II proteins were incorporated into HSG complexes, whose ultrastructure was different from that of complexes formed by class I and class II proteins alone. Although other, more distantly related, members of the Hsp20 family, i.e. the plastidic pea Hsp21, the Drosophila Hsp23 and the mouse Hsp25, were well expressed in tobacco protoplasts and formed homo-oligomers of 200-700 kDa, none of them could be recruited to HSG complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号