首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been reported that the biological activity of the human hematopoetic cytokine granulocyte colony stimulating factor (G-CSF) was reduced following incubation with human serum. The mechanism of action of serum has remained elusive although a number of possible mechanisms have been suggested including inactivation due to binding to the serum protein alpha(2)-macroglobulin (alpha(2)M) and degradation by serum proteases. The aim of this study was to clarify the conditions required by serum to reduce the biological activity of the cytokine and to define the mechanism involved. It has also been noted that G-CSF obtained from a CHO expression system (and therefore considered a glycosylated molecule) was resistant to serum inactivation unlike G-CSF obtained from an E. coli expression system (considered to be non-glycosylated). We used an enzymatic approach to remove the carbohydrate residues from glycosylated G-CSF and tested this material for its stability in serum. We additionally used a mutated G-CSF lacking glycosylation sites. We concluded that glycosylation was important in protecting against serum inactivation. We observed that serum reduced the biological activity of non-glycosylated G-CSF in a dose, and temperature dependent manner and deduced that the mechanism of action was dependent upon alpha(2)M bound serum protease enzymes.  相似文献   

2.
The thermal stability of four molecular forms (native, refolded, glycosylated, non-glycosylated) of feruloyl esterase A (FAEA) was studied. From the most to the least thermo-resistant, the four molecular species ranked as follows: (i) glycosylated form produced native, (ii) non-glycosylated form produced native, (iii) non-glycosylated form produced as inclusion bodies and refolded, and (iv) glycosylated form produced native chemically denatured and then refolded. On the basis of these results and of crystal structure data, we discuss the respective importance of protein folding and glycosylation in the thermal stability of recombinant FAEA.  相似文献   

3.
Chung HK  Kim SW  Byun SJ  Ko EM  Chung HJ  Woo JS  Yoo JG  Lee HC  Yang BC  Kwon M  Park SB  Park JK  Kim KW 《BMB reports》2011,44(10):686-691
Granulocyte colony-stimulating factor (G-CSF) is a cytokine secreted by stromal cells and plays a role in the differentiation of bone marrow stem cells and proliferation of neutrophils. Therefore, G-CSF is widely used to reduce the risk of serious infection in immunocompromised patients; however, its use in such patients is limited because of its non-persistent biological activity. We created an N-linked glycosylated form of this cytokine, hG-CSF (Phe140Asn), to assess its biological activity in the promyelocyte cell line HL60. Enhanced biological effects were identified by analyzing the JAK2/STAT3/survivin pathway in HL60 cells. In addition, mutant hG-CSF (Phe140Asn) was observed to have enhanced chemoattractant effects and improved differentiation efficiency in HL60 cells. These results suggest that the addition of N-linked glycosylation was successful in improving the biological activity of hG-CSF. Furthermore, the mutated product appears to be a feasible therapy for patients with neutropenia.  相似文献   

4.
The human chemokine CCL2 gene was expressed in the yeast P.pastoris and gave rise to a mixture of differently glycosylated recombinant proteins. In comparison to non-glycosylated E.coli-derived CCL2, glycosylated yeast CCL2L was 4-20 times less active in a chemotactic assay in vitro. However, CCL2L could maintain full activity upon prolonged incubation at 37 degrees C, whereas the non-glycosylated chemokine readily lost activity. It could be hypothesized that glycosylation is a mechanism used by the organism to modulate CCL2 stability. The partial loss of specific activity due to glycosylation is balanced by the advantage of prolonging the effectiveness of chemokine. Thus, differential glycosylation allows one to obtain highly effective short-lived CCL2 or less-effective long-lived CCL2 and may thus represent a novel mechanism of adaptation to pathological versus physiological conditions.  相似文献   

5.
Chondroitin sulfates are linear sulfated polysaccharides called glycosaminoglycans. They are important nutraceutical and pharmaceutical products that are biosynthesized through the action of chondroitin sulfotransferases on either an unsulfated chondroitin or a dermatan polysaccharide precursor. While the enzymes involved in the biosynthesis of chondroitin sulfates are well known, the cloning end expression of these membrane-bound Golgi enzymes continue to pose challenges. The major chondroitin-4-sulfotransferase, Homo sapiens C4ST-1, had been previously cloned and expressed from mammalian CHO, COS-7, and HEK 293 cells, and its activity was shown to require glycosylation. In the current study, a C4ST-1 construct was designed and expressed in both Escherichia coli and Pichia pastoris in its non-glycosylated and glycosylated forms. Both constructs showed similar activity albeit different kinetic parameters when acting on a microbially prepared unsulfated chondroitin substrate. Moreover, the glycosylated form of C4ST-1 showed lower stability than the non-glycosylated form.  相似文献   

6.
Granulocyte colony-stimulating factor (G-CSF) is a glycoprotein which acts primarily to stimulate the proliferation, differentiation and activation of committed progenitor cells of the neutrophil–granulocyte lineage into functionally mature neutrophils. The traditional biological assays employed to detect G-CSF are a myeloid bone marrow colony assay, a factor-dependent cell line specific for G-CSF and commercially available immunoassays. However, these methods will not distinguish between glycosylated and non-glycosylated forms of the molecule. In this study high-performance capillary electrophoresis (HPCE) was used to analyse glycosylated and non-glycosylated recombinant human granulocyte colony-stimulating factor (r-met-hG-CSF). Glycosylated G-CSF preparations contained human serum albumin (HSA), added as a protein carrier. Glycosylated and non-glycosylated G-CSFs were prepared in 40 mM Na2HPO4 buffer, pH 2.5, containing hydroxypropylmethylcellulose (HPMC) or 50 mM Na2HPO4 buffer, pH 9.0. Glycosylated G-CSF could be separated into two distinct glycoform populations at the lower pH studied. Differences in migration time and peak shape between glycosylated and non-glycosylated G-CSF were demonstrated. HPCE analysis of G-CSF produced using a baculovirus expression vector system revealed a further distinct G-CSF glycoform and demonstrated the resolving power of the technique.  相似文献   

7.
Granulocyte colony-stimulating factor(G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) increased neutrophil C3bi-receptor expression and adherence and rapidly (less than 10 min) primed neutrophils to enhanced O2- release and membrane depolarization stimulated by chemotactic peptide. Direct triggering of O2- release in suspended neutrophils was also provoked by GM-CSF but not by G-CSF. GM-CSF-induced O2- release was inhibited by cyclic AMP agonists and cytochalasin B. The biological activity was greater in non-glycosylated GM-CSF than in glycosylated GM-CSF, whereas it was identical in glycosylated and non-glycosylated G-CSFs. Direct stimulation and priming by GM-CSF were consistently greater than those by G-CSF and the combined addition of the optimal concentrations of G-CSF and GM-CSF resulted in the effects of GM-CSF alone. These findings indicate that the effects of G-CSF and GM-CSF on neutrophil functions are qualitatively and quantitatively different from each other.  相似文献   

8.
Amidating enzyme extracted from porcine pituitary was separated into glycosylated and non-glycosylated forms by fractionation on a column of Concanavalin-A Sepharose. The molecular weights of the species present were assessed by HPLC gel exclusion chromatography, which demonstrated that both the glycosylated and the non-glycosylated forms of the enzyme comprise multiple components. The apparent molecular weights of the non-glycosylated forms ranged from approximately 35 kDa to 100 kDa; the glycosylated enzyme contained species with molecular weights ranging from 65 kDa to 135 kDa. Similar proportions of glycosylated to non-glycosylated enzyme (approximately 1:4) were found in the anterior and posterior regions of the pituitary; higher proportions (approximately 1:1) were observed in the thyroid, adrenals and pancreas. The glycosylated forms of the amidating enzyme were shown to exhibit the same mandatory requirement for copper as the non-glycosylated forms, and no differences were seen in respect of their stimulation by dopamine or their pH optima. Both forms catalysed the hydroxylation of glyoxylic acid phenylhydrazone, indicating a common mechanism of action. By these criteria, glycosylation does not affect the activity of the amidating enzyme.  相似文献   

9.
The three N-glycosylation sites of human heparin binding protein (HBP) have been mutated to produce a nonglycosylated HBP (ng-HBP) mutant. ng-HBP has been crystallized and tested for biological activity. Complete X-ray data have been collected to 2.1 A resolution, and the structure has been fully refined to an R-factor of 18.4% (R(free) 27.7%). The ng-HBP structure reveals that neither the secondary nor tertiary structure have changed due to the removal of the glycosylation, as compared to the previously determined glycosylated HBP structure. Although the primary events in N-linked glycosylation occurs concomitant with polypeptide synthesis and therefore possesses the ability to influence early events in protein folding, we see no evidence of glycosylation influencing the structure of the protein. The root-mean-square deviation between the superimposed structures was 0.24 A (on C alpha atoms), and only minor local structural differences are observed. Also, the overall stability of the protein seems to be unaffected by glycosylation, as judged by the B-factors derived from the two X-ray structures. The flexibility of a glycan site may be determined by the local polypeptide sequence and structure rather than the glycan itself. The biological in vitro activity assay data show that ng-HBP, contrary to glycosylated HBP, mediates only a very limited stimulation of the lipopolysaccharide induced cytokine release from human monocytes. In animal models of fecal peritonitis, glycosylated HBP treatment rescues mice from and an otherwise lethal injury. It appears that ng-HBP have significant effect on survival, and it can be concluded that ng-HBP can stimulate the host defence machinery albeit to a lesser extent than glycosylated HBP.  相似文献   

10.
The possible role of carbohydrate moieties in the stabilization of proteins has been investigated by using bitter gourd peroxidase as a model system. A comparative study of glycosylated and non-glycosylated isoenzymes of bitter gourd peroxidase was performed at various temperatures, pH, water-miscible organic solvents, detergents and chaotropic agent like urea. The pH-optima and temperature-optima of both glycosylated and non-glycosylated isoforms of bitter gourd peroxidase remained unchanged. The probes employed were changes in the enzyme activity and fluorescence. The glycosylated form of peroxidase retained greater fraction of enzyme activity against the exposure caused by various physical and chemical denaturants. The unfolding of both forms of enzyme in the presence of high urea concentrations, studied by fluorescence, indicated greater perturbations in the conformation of non-glycosylated preparation. The different properties examined thus indicated that glycosylation plays an important role in the stabilization of native conformation of proteins against the inactivation caused by various types of denaturants.  相似文献   

11.
Juvenile hormone (JH) regulates insect growth and development. JH present in the hemolymph is bound to juvenile hormone binding protein (hJHBP) which protects JH from degradation. In G. mellonella, this protein is glycosylated only at one (Asn(94)) of the two potential N-linked glycosylation sites (Asn(4) and Asn(94)). To investigate the function of glycosylation, each of the two potential glycosylation sites in the rJHBP molecule was examined by site-directed mutagenesis. MS analysis revealed that rJHBP overexpressed in the P. pastoris system may appear in a non-glycosylated as well as in a glycosylated form at both sites. We found that mutation at position Asn(94) reduces the level of protein secretion whereas mutation at the Asn(4) site has no effect on protein secretion. Purified rJHBP and its mutated forms (N4W and N94A) have the same JH binding activities similar to that of hJHBP. However, both mutants devoid of the carbohydrate chain are more susceptible to thermal inactivation. It is concluded that glycosylation of JHBP molecule is important for its thermal stability and secretion although it is not required for JH binding activity.  相似文献   

12.
W Min  A J Dunn    D H Jones 《The EMBO journal》1992,11(4):1303-1307
The complex post-translational processing of concanavalin A (Con A) in maturing jackbeans is unique because the non-glycosylated mature active protein is circularly permuted in primary sequence relative to its own inactive precursor (glycosylated pro-Con A) and to other legume lectins. We show here that non-glycosylated pro-Con A expressed in bacteria from recombinant cDNA (rec-pro-Con A) folds in vivo and in vitro to a stable form which is active without further processing. N-glycosylation alone must therefore be sufficient to inactivate pro-Con A--a novel role for glycosylation in regulating activity during protein maturation.  相似文献   

13.
Application of tools of molecular biology and genomics is increasingly leading towards the development of recombinant protein-based biologics. As such, it is leading to an increased diversity of targets that have important health applications and require more flexible approaches for expression because of complex post-translational modifications. For example, Plasmodium parasites may have complex post-translationally modified proteins such as Pfs48/45 that do not carry N-linked glycans (Exp. Parasitol. 1998; 90, 165.) but contain potential N-linked glycosylation sites that can be aberrantly glycosylated during expression in mammalian and plant systems. Therefore, it is important to develop strategies for producing non-glycosylated forms of these targets to preserve biological activity and native conformation. In this study, we are describing in vivo deglycosylation of recombinant N-glycosylated proteins as a result of their transient co-expression with bacterial PNGase F (Peptide: N-glycosidase F). In addition, we show that the recognition of an in vivo deglycosylated plant-produced malaria vaccine candidate, Pfs48F1, by monoclonal antibodies I, III and V raised against various epitopes (I, III and V) of native Pfs48/45 of Plasmodium falciparum, was significantly stronger compared to that of the glycosylated form of plant-produced Pfs48F1. To our knowledge, neither in vivo enzymatic protein deglycosylation has been previously achieved in any eukaryotic system, including plants, nor has bacterial PNGase F been expressed in the plant system. Thus, here, we report for the first time the expression in plants of an active bacterial enzyme PNGase F and the production of recombinant proteins of interest in a non-glycosylated form.  相似文献   

14.
Y P Loh  H Gainer 《Life sciences》1982,31(26):3043-3050
The influence of glycosylation of a prohormone, pro-opiocortin, on its processing by intermediate (pituitary) lobe converting enzyme activity in vitro was studied. [3H]-arginine-labeled glycosylated and non-glycosylated pro-opiocortins were isolated from untreated, and tunicamycin treated toad neurointermediate lobes, respectively, after pulse-labeling in [3H]-arginine containing incubation media. These labeled precursors were then incubated at 37 degrees C in the presence of pro-opiocortin converting enzyme activity derived from rat intermediate lobe (pituitary) secretory granule lysates. The rates of conversion of the glycosylated and nonglycosylated pro-opiocortins to smaller peptide products, in vitro, were similar. Analysis of the peptide products by immunoprecipitation with ACTH and beta-endorphin antisera, and subsequent electrophoresis on acid-urea gels, indicate a comparable processing in vitro of the two forms of pro-opiocortin substrate. The only difference was that the normally glycosylated peptide products derived from glycosylated pro-opiocortin (i.e., 13K ACTH, 21K ACTH, and the 16K glycopeptide) differed in their gel electrophoretic mobilities from their counterparts derived from nonglycosylated prohormone, in a manner consistent with the absence of carbohydrate on the latter's peptides. These data show that glycosylation of the prohormone does not influence its processing in vitro by the converting enzyme activity.  相似文献   

15.
Interleukin-6 (IL-6) family cytokines play important roles in cardioprotection against pathological stresses. IL-6 cytokines bind to their specific receptors and activate glycoprotein 130 (gp130), a common receptor, followed by further activation of STAT3 and extracellular signal-regulated kinase (ERK)1/2 through janus kinases (JAKs); however the importance of glycosylation of gp130 remains to be elucidated in cardiac myocytes. In this study, we examined the biological significance of gp130 glycosylation using tunicamycin (Tm), an inhibitor of enzyme involved in N-linked glycosylation. In cardiomyocytes, the treatment with Tm completely replaced the glycosylated form of gp130 with its unglycosylated one. Tm treatment inhibited leukemia inhibitory factor (LIF)-mediated activation of STAT3 and ERK1/2. Similarly, IL-11 failed to activate STAT3 and ERK1/2 in the presence of Tm. Interestingly, Tm inhibited the activation of JAKs 1 and 2, without influencing the expression of suppressor of cytokine signalings (SOCSs) and protein-tyrosine phosphatase 1B (PTP1B), which are endogenous inhibitors of JAKs. To exclude the possibility that Tm blocks LIF and IL-11 signals by inhibiting the glycosylation of their specific receptors, we investigated whether the stimulation with IL-6 plus soluble IL-6 receptor (sIL-6R) could transduce their signals in Tm-treated cardiomyocytes and found that this stimulation was unable to activate the downstream signals. Collectively, these findings indicate that glycosylation of gp130 is essential for signal transduction of IL-6 family cytokines in cardiomyocytes.  相似文献   

16.
After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.  相似文献   

17.
Glycosylation is a common posttranslational modification that generally increases protein solubility and thermodynamic stability. Less is known about how this modification influences protein folding, particularly folding processes involving intermediate species. In the present report, folding comparisons of a nonglycosylated erythropoietin (EPO) mutant are made with the fully glycosylated EPO, which was recently shown to fold by a three-state on-pathway mechanism. The absence of glycosylation did not alter the folding mechanism of EPO but did greatly decrease the stability of the intermediate species, change the rate-limiting step of the folding reaction, and accelerate the folding kinetics to both the intermediate state and the native state. Surprisingly, glycosylation stabilized the intermediate species to a greater extent than it increased the EPO equilibrium stability. These results suggest that glycosylation impedes the latter EPO folding steps rather than accelerating them by biasing particular folding pathways, as previously proposed for folding reactions initiated from unfolded ensembles with minimal residual structure. Due to the specific biological processes modulated by EPO glycosylation, however, there may be little evolutionary pressure to fold on a faster, more direct pathway at the expense of biological function, particularly given the protective role glycosylation has at preventing EPO aggregation. Lastly, evidence that is consistent with glycosylation destabilizing the unfolded state to some degree and contributing to the greater equilibrium stability of the glycosylated EPO is presented.  相似文献   

18.
Human seminal ribonuclease (a basic protein occurring in a glycosylated and in a non-glycosylated form) is very active against double-stranded RNAs (De Prisco, R., Sorrentino, S., Leone, E. and Libonati, M. (1984) Biochim. Biophys. Acta 788, 356-363). The action of the two enzyme forms on single-stranded and double-stranded substrates was studied as a function of pH and ionic strength. Results indicate (1) that glycosylation of the RNAase molecule does not affect enzyme action on single-stranded RNAs, while (2) degradation of double-stranded RNAs is moderately increased by the presence of carbohydrates in the enzyme molecule. Human seminal RNAase shows a marked helix-destabilizing activity on poly(dA-dT) X poly(dA-dT). Under various conditions, this action (1) is definitely stronger than that of bovine RNAase A, and (2) seems to be less dependent on the glycosylation than on the basicity of the enzyme protein. The remarkable activity of human seminal RNAase on double-stranded RNA may, at least partly, be related to the enzyme properties mentioned above.  相似文献   

19.
The activities of a cationic (C.PRX) and an anionic peroxidase isolated from peanut (Arachis hypogaea)-cell suspension culture were drastically reduced when they were deglycosylated with glycopeptidase F or oxidized by 10 mM-periodate. In contrast with the controls, the deglycosylated or the oxidized peroxidases were much more susceptible to proteolytic degradation. In radiolabelling experiments with [35S]methionine, the non-glycosylated C.PRX was synthesized in the tunicamycin-treated cultures and secreted into the medium. Examination of the C.PRX polypeptides by SDS/polyacrylamide-gel electrophoresis followed by fluorography showed that the non-glycosylated form had an Mr of approx. 31,000, which is about 78% of that of the glycosylated form. Our results suggest that carbohydrates may not be essential for peroxidase secretion, but that stabilization of the peroxidase molecules and acquisition by these isoenzymes of a catalytically active conformation is linked directly or indirectly to glycosylation.  相似文献   

20.
Dissecting glycoprotein biosynthesis by the use of specific inhibitors   总被引:7,自引:0,他引:7  
W McDowell  R T Schwarz 《Biochimie》1988,70(11):1535-1549
It is possible to interfere with different steps in the dolichol pathway of protein glycosylation and in the processing of asparagine-linked oligosaccharides. Thus some clues about the role of protein-bound carbohydrate can be obtained by comparing the biochemical fates and functions of glycosylated proteins with their non-glycosylated counterparts, or with proteins exhibiting differences in the type of oligosaccharide side chains. Cells infected with enveloped viruses are good systems for studying both aspects of protein glycosylation, since they contain a limited number of different glycoproteins, often with well-defined functions. Tunicamycin, an antibiotic, as well as several sugar analogues have been found to act as inhibitors of protein glycosylation by virtue of their anti-viral properties. They interfere with various steps in the dolichol pathway resulting in a lack of functional lipid-linked oligosaccharide precursors. Compounds that interfere with oligosaccharide trimming represent a second generation of inhibitors of glycosylation. They are glycosidase inhibitors that interfere with the processing glucosidases and mannosidases and, as a result, the conversion of high-mannose into complex-type oligosaccharides is blocked. Depending upon the compound used, glycoproteins contain glucosylated-high-mannose, high-mannose or hybrid oligosaccharide structures instead of complex ones. The biological consequences of the alterations caused by the inhibitors are manifold: increased susceptibility to proteases, improper protein processing and misfolding of polypeptide chains, loss of biological activity and alteration of the site of virus-budding, to name but a few.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号