首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
A simple protocol for rapid assembly of chemically synthesized deoxyoligonucleotides into double stranded DNA is described. Several parameters of a ligation-free method were investigated to allow efficient assembly of a large number of oligonucleotides into double stranded DNA by polymerase chain reaction. Synthesis of a 701 bp DNA was carried out in a single reaction by assembling 28 oligonucleotides designed with partial overlaps at complementary ends. An estimate of error rate was made by sequencing several independent clones of the synthesized DNA  相似文献   

2.
DNA junctions, known as Holliday junctions, are intermediates in genetic recombination between DNAs. In this structure, two double-stranded DNA helices with similar sequence are joined at a branch point. The branch point can move along these helices when strands with the same sequence are exchanged. Such branch migration is modeled as a random walk. First, we model this process discretely, such that the motion of the branch is represented as transfer between discrete compartments. This is useful in analysing the results of DNA branch migration on junction comprised of synthetic oligonucleotides. The limit in which larger numbers of smaller steps go to continuous motion of the branch is also considered. We show that the behavior of the continuous system is very similar to that of the discrete system when there are more than just a few compartments. Thus, even branch migration on oligonucleotides can be viewed as a continuous process. One consequence of this is that a step size must be assumed when determining rate constants of branch migration.We compare migration where forward and backward movements of the branch are equally probable to biased migration where one direction is favored over the other. In the latter case larger differences between the discrete and continuous cases are predicted, but the differences are still small relative to the experimental error associated with experiments to measure branch migration in oligonucleotides.  相似文献   

3.
Liu Q  Swiderski P  Sommer SS 《BioTechniques》2002,33(1):129-32, 134-6, 138
The error rate of conventional PCR is problematic when amplifying from single cells or amplifying segments for protein functional analysis by in vitro translation. We describe truncated amplification, a method for high-fidelity amplification in which DNA polymerase errors are not propagated efficiently and original DNA templates exert greater influence on the amplification process. Truncated amplification utilizes pairs of oligonucleotides and thermal cycling, but it differs from PCR. Truncated amplification amplifies non-exponentially with one or two chimeric oligonucleotides and produces truncated terminal products that are no more than three rounds of replication from the original template. Exon 6 of the p53 gene was utilized as a model system to demonstrate proof of principle. Chimeric oligonucleotides containing three 3'-->5' reversed-deoxynucleotides or 2'-OMe-ribonucleotides at 6-8 nucleotides from the 3 'terminus retained sequence specificity and primer extension activity. With PfuTurbo but not with Taq or Vent (exo-) DNA polymerases, the modified nucleotides completely truncated the DNA polymerase elongation. The resulting truncated terminal products are not templates for further amplification because of the short length of the 3' complementary region. Truncated amplific ation can amplify quadratically or geometrically depending on whether two or one chimeric oligonucleotides are used. Truncated amplification is a promising approach when template-driven amplification is desired to increase thefrequency of error-free products.  相似文献   

4.
Scalability of the surface-based DNA algorithm for 3-SAT   总被引:3,自引:0,他引:3  
Li D  Li X  Huang H  Li X 《Bio Systems》2006,85(2):95-98
Since Adleman first proposed DNA computing for the Hamiltonian path problem, several authors have reported DNA computing for 3-SAT. Previous research presented DNA computing on surfaces and demonstrated how to solve a four-variable four-clause instance of 3-SAT, and claimed that the surface-based approach was designed to scale up to larger problems. In this paper we establish an error model for the incomplete "mark" and imperfect "destroy" operations. By using the error model we argue that no matter how large the "mark" and "destroy" rates are we can always give satisfiable instances of 3-SAT such that no DNA strands remain on the surface at the end of the computation. By the surface-based approach the satisfiable instances of 3-SAT would be misdetermined to be unsatisfiable. Thus, the error leads to an incorrect result of the SAT computation. Furthermore, given the "mark" rate p and the "not-destroy" rate rho, we find that the approach can only solve at most N-variable instances of 3-SAT problems, where N=[(2+beta(2)+2+2 square root beta (2))/beta(2)] in which beta=1-1/(p+rhoq) and q=1-p and [a] is the greatest integer less than a or equal to a.  相似文献   

5.
Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.  相似文献   

6.
Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology and synthetic biology. Here, we show for the first time how recursion can be used to address this challenge and demonstrate a recursive procedure that constructs error‐free DNA molecules and their libraries from error‐prone oligonucleotides. Divide and Conquer (D&C), the quintessential recursive problem‐solving technique, is applied in silico to divide the target DNA sequence into overlapping oligonucleotides short enough to be synthesized directly, albeit with errors; error‐prone oligonucleotides are recursively combined in vitro, forming error‐prone DNA molecules; error‐free fragments of these molecules are then identified, extracted and used as new, typically longer and more accurate, inputs to another iteration of the recursive construction procedure; the entire process repeats until an error‐free target molecule is formed. Our recursive construction procedure surpasses existing methods for de novo DNA synthesis in speed, precision, amenability to automation, ease of combining synthetic and natural DNA fragments, and ability to construct designer DNA libraries. It thus provides a novel and robust foundation for the design and construction of synthetic biological molecules and organisms.  相似文献   

7.
DNA nanotechnology often requires collections of oligonucleotides called "DNA free energy gap codes" that do not produce erroneous crosshybridizations in a competitive muliplexing environment. This paper addresses the question of how to design these codes to accomplish a desired amount of work within an acceptable error rate. Using a statistical thermodynamic and probabilistic model of DNA code fidelity and mathematical random coding theory methods, theoretical lower bounds on the size of DNA codes are given. More importantly, DNA code design parameters (e.g., strand number, strand length and sequence composition) needed to achieve experimental goals are identified.  相似文献   

8.
Ralstonia solanacerum and Clavibacter michiganensis subsp. sepedonicus are the two most relevant bacterial pathogens of potato for which a large number of molecular diagnostic methods using specific DNA sequences have been developed. About one hundred oligonucleotides have been described and thoroughly tested experimentally. After having compiled and evaluated all these primers and probes in silico to check their specificity, many discrepancies were found. A detailed analysis permitted the recognition of different possible reasons for such discrepancies: sequencing errors in public sequences, wrong supposed specificity (sometimes due to more recent sequences than the oligonucleotides being evaluated) or even typing errors in the oligonucleotides. Although this study is an exercise about in silico evaluation using two potato bacterial pathogens as a model, the conclusions reflect not only information useful for phytopathologists but, in a broader scope, draw the main situations that can be found during an evaluation of probes, which can be surely found in other scenarios.  相似文献   

9.
Specific interactions between retroviral integrase (IN) and long terminal repeats are required for insertion of viral DNA into the host genome. To characterize quantitatively the determinants of substrate specificity, we used a method based on a stepwise increase in ligand complexity. This allowed an estimation of the relative contributions of each nucleotide from oligonucleotides to the total affinity for IN. The interaction of HIV-1 integrase with specific (containing sequences from the LTR) or nonspecific oligonucleotides was analyzed using a thermodynamic model. Integrase interacted with oligonucleotides through a superposition of weak contacts with their bases, and more importantly, with the internucleotide phosphate groups. All these structural components contributed in a combined way to the free energy of binding with the major contribution made by the conserved 3'-terminal GT, and after its removal, by the CA dinucleotide. In contrast to nonspecific oligonucleotides that inhibited the reaction catalyzed by IN, specific oligonucleotides enhanced the activity, probably owing to the effect of sequence-specific ligands on the dynamic equilibrium between the oligomeric forms of IN. However, after preactivation of IN by incubation with Mn(2+), the specific oligonucleotides were also able to inhibit the processing reaction. We found that nonspecific interactions of IN with DNA provide approximately 8 orders of magnitude in the affinity (Delta G degrees approximately equal to -10.3 kcal/mol), while the relative contribution of specific nucleotides of the substrate corresponds to approximately 1.5 orders of magnitude (Delta G degrees approximately equal to - 2.0 kcal/mol). Formation of the Michaelis complex between IN and specific DNA cannot by itself account for the major contribution of enzyme specificity, which lies in the k(cat) term; the rate is increased by more than 5 orders of magnitude upon transition from nonspecific to specific oligonucleotides.  相似文献   

10.
The efficiency of single-stranded (ss) oligonucleotides binding at the secondary site of the RecA protein filament is demonstrated to depend on the strandedness of DNA bound at the primary site. When the primary site is occupied by a ss-oligonucleotide, the binding of another ss-oligonucleotide at the secondary site is characterized by higher affinity and a lower rate of dissociation than is the case when the primary site is occupied by a double-stranded oligonucleotide. In contrast to a DNA strand exchange reaction suppressed by a heterologous oligonucleotide bound at the secondary site of the RecA filament, the occupation of the secondary site by a heterologous oligonucleotide does not prevent renaturation between the oligonucleotides bound at the primary site and complementary oligonucleotides from solution demonstrating that the binding of a DNA strand in the secondary site is not a necessary intermediate step in RecA-promoted DNA renaturation.  相似文献   

11.
We have developed an oligonucleotide-mediated cloning technique based on homologous recombination in Saccharomyces cerevisiae that allows precise DNA sequences to be transferred independent of restriction enzymes and PCR. In this procedure, linear DNA sequences are targeted to a chosen site in a yeast vector by DNA linkers, which consist of two partially overlapping oligonucleotides. The linkers contain relatively short regions of both yeast vector sequences and insert sequences, which stimulate homologous recombination between the vector and the insert. The linkers can also contain sequences not found in either the vector or the insert (e.g., sequences that encode ribosome binding sites, epitope tags, preferred codons, etc.), thus allowing modification of the transferred DNA. Linkers can be designed such that DNA sequences can be transferred with just two reusable universal oligonucleotides and two gene-specific oligonucleotides. This cloning method, which is performed by co-transforming yeast with linear vector, substrate DNA, and unannealed oligonucleotides, has been termed the yeast-based, oligonucleotide-mediated gap repair technique (YOGRT).  相似文献   

12.
DNA biosensors based on self-assembled carbon nanotubes   总被引:5,自引:0,他引:5  
DNA biosensors based on self-assembled multi-walled carbon nanotubes (MWNTs) were described in this paper, in which the probe DNA oligonucleotides were immobilized by forming covalent amide bonds between carboxyl groups at the nanotubes and amino groups at the ends of the DNA oligonucleotides. Hybridization between the probe and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of the indicator of methylene blue. Our results demonstrate that the DNA biosensors based on self-assembled MWNTs had a higher hybridization efficiency compared to those based on random MWNTs. In addition, the developed DNA biosensors also had a high selectivity of hybridization detection.  相似文献   

13.
Nucleic acid microarrays are the only tools that can supply very large oligonucleotide libraries, cornerstones of the nascent fields of de novo gene assembly and DNA data storage. Although the chemical synthesis of oligonucleotides is highly developed and robust, it is not error free, requiring the design of methods that can correct or compensate for errors, or select for high-fidelity oligomers. However, outside the realm of array manufacturers, little is known about the sources of errors and their extent. In this study, we look at the error rate of DNA libraries synthesized by photolithography and dissect the proportion of deletion, insertion and substitution errors. We find that the deletion rate is governed by the photolysis yield. We identify the most important substitution error and correlate it to phosphoramidite coupling. Besides synthetic failures originating from the coupling cycle, we uncover the role of imperfections and limitations related to optics, highlight the importance of absorbing UV light to avoid internal reflections and chart the dependence of error rate on both position on the array and position within individual oligonucleotides. Being able to precisely quantify all types of errors will allow for optimal choice of fabrication parameters and array design.  相似文献   

14.
We present a novel application of active voltage control of DNA captured in a nanopore to regulate the amount of time the DNA is available to molecules in the bulk phase that bind to the DNA. In this work, the control method is used to measure hybridization between a single molecule of DNA captured in a nanopore and complementary oligonucleotides in the bulk phase. We examine the effect of oligonucleotide length on hybridization, and the effect of DNA length heterogeneity on the measurements. Using a mathematical model, we are able to deduce the binding rate of complementary oligonucleotides, even when DNA samples in experiments are affected by heterogeneity in length. We analyze the lifetime distribution of DNA duplexes that are formed in the bulk phase and then pulled against the pore by reversing the voltage. The lifetime distribution reveals several dissociation modes. It remains to be resolved whether these dissociation modes are due to DNA heterogeneity or correspond to different states of duplex DNA. The control method is unique in its ability to detect single-molecule complex assembly in the bulk phase, free from external force and with a broad (millisecond-to-second) temporal range.  相似文献   

15.
Low-cost, high-throughput gene synthesis and precise control of protein expression are of critical importance to synthetic biology and biotechnology. Here we describe the development of an on-chip gene synthesis technology, which integrates on a single microchip the synthesis of DNA oligonucleotides using inkjet printing, isothermal oligonucleotide amplification and parallel gene assembly. Use of a mismatch-specific endonuclease for error correction results in an error rate of ~0.19 errors per kb. We applied this approach to synthesize pools of thousands of codon-usage variants of lacZα and 74 challenging Drosophila protein antigens, which were then screened for expression in Escherichia coli. In one round of synthesis and screening, we obtained DNA sequences that were expressed at a wide range of levels, from zero to almost 60% of the total cell protein mass. This technology may facilitate systematic investigation of the molecular mechanisms of protein translation and the design, construction and evolution of macromolecular machines, metabolic networks and synthetic cells.  相似文献   

16.
The assembly of synthetic oligonucleotides into genes and genomes is an important methodology. Several methodologies for such synthesis have been developed, but they have two drawbacks: (1) the processes are slow and (2) the error frequencies are high (typically 1-3 errors/kb of DNA). Thermal damage is a major contributor to biosynthetic errors. In this paper, we elucidate the advantages of rapid gene synthesis by polymerase chain assembly (PCA) when used in combination with smart error control strategies. We used a high-speed thermocycler (PCRJet) to effectively minimize thermal damage and to perform rapid assembly of synthetic oligonucleotides to construct two different genes: endothelial protein C receptor (EPCR) and endothelial cell thrombin receptor, thrombomodulin (TM). First, the intact EPCR gene (EPCR-1, 612 bp) and a mutant EPCR-2 (576 bp) that lacked 4 N-linked glycosylation sites were constructed from 35 and 33 oligonucleotides, respectively. Next, for direct error comparison, another longer gene, the 1548 bp TM gene was constructed from 87 oligonucleotides by both rapid and conventional PCA. The fidelity and accuracy of the synthetic genes generated in this manner were confirmed by sequencing. The combined steps of PCA and DNA amplification are completed in about 10 and 22 min for EPCR-1, 2 and TM genes, respectively with comparable low errors in the DNA sequence. Furthermore, we subcloned synthetic TM, EPCR-1, EPCR-2 and native EPCR-1 (amplified from cDNA) into a Pichia pastoris expression vector to evaluate the expression ability, and to compare them with the native gene. Here, we illustrate that the synthetic genes, assembled by rapid PCA, successfully directed the expression of functional proteins. And, importantly, the synthetic and the native genes expressed proteins with the same efficiency.  相似文献   

17.
The increased levels of extracellular DNA found in a number of disorders involving dysregulation of the fibrinolytic system may affect interactions between fibrinolytic enzymes and inhibitors. Double-stranded (ds) DNA and oligonucleotides bind tissue-(tPA) and urokinase (uPA)-type plasminogen activators, plasmin, and plasminogen with submicromolar affinity. The binding of enzymes to DNA was detected by EMSA, steady-state, and stopped-flow fluorimetry. The interaction of dsDNA/oligonucleotides with tPA and uPA includes a fast bimolecular step, followed by two monomolecular steps, likely indicating slow conformational changes in the enzyme. DNA (0.1-5.0 μg/ml), but not RNA, potentiates the activation of Glu- and Lys-plasminogen by tPA and uPA by 480- and 70-fold and 10.7- and 17-fold, respectively, via a template mechanism similar to that known for fibrin. However, unlike fibrin, dsDNA/oligonucleotides moderately affect the reaction between plasmin and α(2)-antiplasmin and accelerate the inactivation of tPA and two chain uPA by plasminogen activator inhibitor-1 (PAI-1), which is potentiated by vitronectin. dsDNA (0.1-1.0 μg/ml) does not affect the rate of fibrinolysis by plasmin but increases by 4-5-fold the rate of fibrinolysis by Glu-plasminogen/plasminogen activator. The presence of α(2)-antiplasmin abolishes the potentiation of fibrinolysis by dsDNA. At higher concentrations (1.0-20 μg/ml), dsDNA competes for plasmin with fibrin and decreases the rate of fibrinolysis. dsDNA/oligonucleotides incorporated into a fibrin film also inhibit fibrinolysis. Thus, extracellular DNA at physiological concentrations may potentiate fibrinolysis by stimulating fibrin-independent plasminogen activation. Conversely, DNA could inhibit fibrinolysis by increasing the susceptibility of fibrinolytic enzymes to serpins.  相似文献   

18.
Xiong AS  Yao QH  Peng RH  Duan H  Li X  Fan HQ  Cheng ZM  Li Y 《Nature protocols》2006,1(2):791-797
Here we describe a simple and rapid method for assembly and PCR-based accurate synthesis (PAS) of long DNA sequences. The PAS protocol involves the following five steps: (i) design of the DNA sequence to be synthesized and of 60-bp overlapping oligonucleotides to cover the entire DNA sequence; (ii) purification of the oligonucleotides by PAGE; (iii) first PCR, to synthesize DNA fragments of 400-500 bp in length using 10 inner (template) and two outer (primer) oligonucleotides; (iv) second PCR, to assemble the products of the first PCR into the full-length DNA sequence; and (v) cloning and verification of the synthetic DNA by sequencing and, if needed, error correction using an overlap-extension PCR technique. This method, which takes approximately 1 wk, is suitable for synthesizing diverse types of long DNA molecule. We have successfully synthesized DNA fragments from 0.5 to 12.0 kb, with high G+C content, repetitive sequences or complex secondary structures. The PAS protocol therefore provides a simple, rapid, reliable and relatively inexpensive method for synthesizing long, accurate DNA sequences.  相似文献   

19.
Optically programming DNA computing in microflow reactors   总被引:2,自引:0,他引:2  
McCaskill JS 《Bio Systems》2001,59(2):125-138
The programmability and the integration of biochemical processing protocols are addressed for DNA computing using photochemical and microsystem techniques. A magnetically switchable selective transfer module (STM) is presented which implements the basic sequence-specific DNA filtering operation under constant flow. Secondly, a single steady flow system of STMs is presented which solves an arbitrary instance of the maximal clique problem of given maximum size N. Values of N up to about 100 should be achievable with current lithographic techniques. The specific problem is encoded in an initial labeling pattern of each module with one of 2N DNA oligonucleotides, identical for all instances of maximal clique. Thirdly, a method for optically programming the DNA labeling process via photochemical lithography is proposed, allowing different problem instances to be specified. No hydrodynamic switching of flows is required during operation -- the STMs are synchronously clocked by an external magnet. An experimental implementation of this architecture is under construction and will be reported elsewhere.  相似文献   

20.
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号