首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The horns of giant rhinoceros beetles are a classic example of the elaborate morphologies that can result from sexual selection. Theory predicts that sexual traits will evolve to be increasingly exaggerated until survival costs balance the reproductive benefits of further trait elaboration. In Trypoxylus dichotomus, long horns confer a competitive advantage to males, yet previous studies have found that they do not incur survival costs. It is therefore unlikely that horn size is limited by the theoretical cost–benefit equilibrium. However, males sometimes fight vigorously enough to break their horns, so mechanical limits may set an upper bound on horn size. Here, I tested this mechanical limit hypothesis by measuring safety factors across the full range of horn sizes. Safety factors were calculated as the ratio between the force required to break a horn and the maximum force exerted on a horn during a typical fight. I found that safety factors decrease with increasing horn length, indicating that the risk of breakage is indeed highest for the longest horns. Structural failure of oversized horns may therefore oppose the continued exaggeration of horn length driven by male–male competition and set a mechanical limit on the maximum size of rhinoceros beetle horns.  相似文献   

2.
Sexual dimorphism, the difference between the sexes in secondary sexual characters, is in general driven by processes of sexual selection. The horn-headed cricket, Loxoblemmus doenitzi, exhibits sexual dimorphism in head shape. Males have flat heads and triangular horns on both sides of their heads, whereas females have rounded heads and no horns. We hypothesized that male horns have evolved due to intra-sexual selection, in which males use these horns as weapons in aggressive interactions. We tested two predictions of this hypothesis by conducting agonistic trials with field-caught males of L. doenitzi: (1) the horns should be used in agonistic interactions between males, and (2) the asymmetry in horn size or horn use may determine contest outcome. Horn length was significantly correlated with thorax length and hind femur length. During agonistic interactions, males aggressively used their horns by beating the opponent’s horns with their own or by poking the opponent’s body. However, logistic regression analysis revealed that neither horn length nor horn use were significant factors for contest outcome. Instead, body size was significant for determining contest outcome. We discuss possible scenarios for evolution of male horns in L. doenitzi.  相似文献   

3.
Sexual selection is known to operate at medfly leks with a few males gaining a high proportion of matings. However, specific male characteristics subject to sexual selection have not been identified. Here we report laboratory studies indicating that directional sexual selection operates on the level of fluctuating asymmetry (FA) in the superior frontal orbital setae (sex setae), with symmetrical males gaining more matings. Studies relating mating success with FA in a male trait have generally been taken as evidence of the operation of indirect sexual selection. For a male trait to acts as a reliable indicator of fitness, FA in the male trait should be negatively associated with trait size and females should mate with the males with the most exaggerated form of the trait. However no association was found between seta FA and mean seta length. In addition sexual selection did not appear to operate on mean trait size, although males with an intermediate sex seta to wing length ratio did achieve higher mating success, indicating that stabilizing sexual selection operates on this relative dimension. It is suggested that differences in male competitive ability may provide an alternative explanation of how such associations between mating success and FA in male characteristics can arise.  相似文献   

4.
Temporal patterns of natural and sexual selection on male badge size and body traits were studied in a population of house sparrows, Passer domesticus. Badge size was a heritable trait as revealed by a significant father-son regression. Survival during autumn dispersal and winter was not related to badge size or body traits in yearling male house sparrows. Badges that signal dominance status were affected positively by directional selection for mating. Adult male house sparrows suffered an opposing selection pressure on badge size during autumn. Contrary to males, female house sparrows did not experience significant directional or stabilizing selection on any body trait. Directional sexual selection on male badge size due to female choice moves male sparrows away from their survival optimum. Opposing directional natural selection on badge size due to autumn mortality caused by predation maintains a stable badge size.  相似文献   

5.
Darwin considered the horns of male beetles to be among the most striking examples of sexual selection. As with antlers in deer or elk, beetle horns scale positively with male body size, with the result that large males have disproportionately longer horns than small males. It is generally assumed that such scaling relationships (''static allometries'') are insensitive to short-term changes in the environment, and for this reason they are regularly used as diagnostic attributes of populations or species. Here I report breeding experiments on horned beetles that demonstrate that the scaling relationship between male horn length and body size changes when larval nutrition changes. Males reared on a low-quality diet had longer horn lengths at any given body size than sibling males reared on a high-quality diet. Such ''allometry plasticity'' may explain seasonal changes observed in this same scaling relationship in a natural population. These experiments demonstrate that scaling relationships of sexually selected traits can respond facultatively to variation in the environment, thereby revealing a new mechanism by which males regulate the production of exaggerated secondary sexual traits.  相似文献   

6.
Typically males bear the products of sexual selection in the form of ornaments and/or weapons used to compete for and attract females. Secondary sexual traits in females have been thought of as the product of correlated responses to sexual selection on males. However, there is increasing phylogenetic evidence that female secondary sexual traits can arise independently of selection on males, and may be subject to sexual selection. Theoretical models of the evolution of female ornamentation via male mate choice have assumed that females suffer a cost of ornament expression via reduced fecundity, and hence female ornaments are less likely to evolve than male ornaments. In the dung beetle Onthophagus sagittarius, there has been an independent evolutionary origin of horns in females that are qualitatively different from the horns produced by males. We use this system as a model to examine the costs of horn expression for females within a life-history context. We identified a longevity cost of reproduction for females that was independent of horn expression. Large females lived longer, and after controlling for lifespan, had a higher lifetime fecundity, and invested more heavily in maternal provisioning than did small females. We found no evidence of a cost to females of investment in horns. Rather, the rate of increase in fecundity and horn expression with body size were equal, so that absolute horn size provides an accurate indicator of body size and maternal quality. The effects we observe were independent of female contest competition and/or male mate choice, which were excluded in our experimental protocol. However, we speculate on the potential functional contributions female horns might make to female fitness.  相似文献   

7.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

8.
The development of male secondary sexual characters such as antlers or horns has substantial biological and socio‐economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large‐scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.  相似文献   

9.
The expression of secondary sexual traits in females has often been attributed to a correlated response to selection on male traits. In rare cases, females have secondary sexual traits that are not homologous structures to secondary sexual traits in males and are thus less likely to have evolved in females because of correlated selection. In this study, we used the dung beetle Onthophagus sagittarius, a species with sex‐specific horns, to examine the environmental and quantitative genetic control of horn expression in males and females. Offspring subjected to different brood mass manipulations (dung addition/removal) were found to differ significantly in body size. Brood mass manipulation also had a significant effect on the length of male horns; however, female horn length was found to be relatively impervious to the treatment, showing stronger patterns of additive genetic variance than males. We found no correlations between horn expression in males and females. We therefore conclude that the horns of O. sagittarius females are unlikely to result from genetic correlations between males and females. Rather, our data suggest that they may be under independent genetic control.  相似文献   

10.
Nuptial gifts and the evolution of male body size   总被引:4,自引:0,他引:4  
In many insect systems, males donate nuptial gifts to insure an effective copulation or as a form of paternal investment. However, if gift magnitude is both body size-limited and positively related to fitness, then the opportunity exists for the gift to promote the evolution of large male size. In the striped ground cricket, Allonemobius socius, males transfer a body size-limited, somatic nuptial gift that is comprised primarily of hemolymph. To address the implications of this gift on male size evolution, we quantified the intensity and direction of natural (fecundity) and sexual (mating success) selection over multiple generations. We found that male size was under strong positive sexual selection throughout the breeding season. This pattern of selection was similar in successive generations spanning multiple years. Male size was also under strong natural selection, with the largest males siring the most offspring. However, multivariate selection gradients indicated that gift size, and not male size, was the best predictor of female fecundity. In other words, direct fecundity selection for larger gifts placed indirect positive selection on male body size, supporting the hypothesis that nuptial gifts can influence the evolution of male body size in this system. Although female size was also under strong selection due to a size related fecundity advantage, it did not exceed selection on male size. The implications of these results with regard to the maintenance of the female-biased size dimorphic system are discussed.  相似文献   

11.
Males are predicted to compete for reproductive opportunities, with sexual selection driving the evolution of large body size and weaponry through the advantage they confer for access to females. Few studies have explored potential trade-offs of investment in secondary sexual traits between different components of fitness or tested for sexually antagonistic selection pressures. These factors may provide explanations for observed polymorphisms in both form and quality of secondary sexual traits. We report here an analysis of selection on horn phenotype in a feral population of Soay sheep (Ovis aries) on the island of Hirta, St. Kilda, Scotland. Soay sheep display a phenotypic polymorphism for horn type with males growing either normal or reduced (scurred) horns, and females growing either normal, scurred, or no (polled) horns; further variation in size exists within horn morphs. We show that horn phenotype and the size of the trait displayed is subject to different selection pressures in males and females, generating sexually antagonistic selection. Furthermore, there was evidence of a trade-off between breeding success and longevity in normal-horned males, with both the normal horn type and larger horn size being associated with greater annual breeding success but reduced longevity. Therefore, selection through lifetime breeding success was not found to act upon horn phenotype in males. In females, a negative association of annual breeding success within the normal-horned phenotype did not result in a significant difference in lifetime fitness when compared to scurred individuals, as no significant difference in longevity was found. However, increased horn size within this group was negatively associated with breeding success and longevity. Females without horns (polled) suffered reduced longevity and thus reduced lifetime breeding success relative the other horn morphs. Our results therefore suggest that trade-offs between different components of fitness and antagonistic selection between the sexes may maintain genetic variation for secondary sexual traits within a population.  相似文献   

12.
Studies of phenotypic selection in natural populations often concentrate only on short time periods and do not quantify selection intensities. We quantified temporal and microspatial variation in the intensities of natural and sexual selection for body size in the yellow dung fly over 2 years. Female fecundity selection intensity remained approximately constant over the season with an overall mean ± SE of 0.187 ± 0.014. Selection intensity for male reproductive success, defined as eggs obtained by mating males, did not differ from zero, indicating there was no assortative mating by size. Sexual selection intensity for male mating success favouring large males was variable but overall strong in the two years (0.499 ± 0.053 and 0.510 ± 0.051). As theoretically expected for male–male competition, sexual selection intensity increased with competitor density and reached an asymptote at about 250 males per pat; it also decreased with time in spring and increased again in autumn as a function of density. Small males had the best chance of obtaining a female at very low male densities. Greater selection intensity for large size in males than females is consistent with, and might be responsible for, the observed sexual size dimorphism in this species, as males are larger. The seasonal pattern of mean male body size (smallest at the beginning and end of the season) most likely reflects mere environmental (primarily temperature) influences on phenotypic size.  相似文献   

13.
Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)   总被引:1,自引:0,他引:1  
Copris ochus (Coleoptera: Scarabaeidae), an endangered species, is the largest dung beetle in Japan. In C. ochus, males have a long head horn, while females lack this long horn (sexual dimorphism). Very large males of C. ochus have disproportionately longer head horns than small males, suggesting male horn dimorphism, although the dimorphism has not been investigated quantitatively. To clarify sexual and male horn dimorphism in C. ochus quantitatively, we examined the scaling relationship between body size (prothorax width) and head horn length in 94 females and 76 males. These beetles were captured during July 1978 from a natural population on Mt. Aso in southwestern Japan using a light trap. Although the horn length of the females and males scaled with prothorax width, the scaling relationship differed between the sexes, i.e., the relationship was linear in females and nonlinear in males. Statistical tests for dimorphism in male horn length showed a significant discontinuous relationship, thus indicating distinct sexual and male dimorphism in head horns. Long- and short-horned C. ochus males may have different reproductive behaviors, as described in other horned dung beetles.  相似文献   

14.
Phenotypic plasticity allows animals to maximize fitness by conditionally expressing the phenotype best adapted to their environment. Although evidence for such adjustment in reproductive tactics is common, little is known about how phenotypic plasticity evolves in response to sexual selection. We examined the effect of sexual selection intensity on phenotypic plasticity in mating behavior using the beetle Callosobruchus maculatus. Male genital spines harm females during mating and females exhibit copulatory kicking, an apparent resistance trait aimed to dislodge mating males. After exposing individuals from male‐ and female‐biased experimental evolution lines to male‐ and female‐biased sociosexual environments, we examined behavioral plasticity in matings with standard partners. While females from female‐biased lines kicked sooner after exposure to male‐biased sociosexual contexts, in male‐biased lines this plasticity was lost. Ejaculate size did not diverge in response to selection history, but males from both treatments exhibited plasticity consistent with sperm competition intensity models, reducing size as the number of competitors increased. Analysis of immunocompetence revealed reduced immunity in both sexes in male‐biased lines, pointing to increased reproductive costs under high sexual selection. These results highlight how male and female reproductive strategies are shaped by interactions between phenotypically plastic and genetic mechanisms of sexual trait expression.  相似文献   

15.
The existence of discrete phenotypic variation within one sex poses interesting questions regarding how such intrasexual polymorphisms are produced and modified during the course of evolution. Approaching these kinds of questions requires insights into the genetic architecture underlying a polymorphism and an understanding of the proximate mechanisms determining phenotype expression. Here we explore the genetic underpinnings and proximate factors influencing the expression of beetle horns – a dramatic sexually selected trait exhibiting intramale dimorphism in many species. Two relatively discrete male morphs are present in natural populations of the dung beetle Onthophagus taurus (Scarabaeidae, Onthophagini). Males exceeding a critical body size develop a pair of long, curved horns on their heads, while those smaller than this critical body size remain essentially hornless. We present results from laboratory breeding experiments designed to assess the relative importance of inherited and environmental factors as determinants of male morphology. Using father–son regressions, our findings demonstrate that horn length and body size of male progeny are not predicted from paternal morphology. Instead, natural variation in an environmental factor, the amount of food available to larvae, determined both the body sizes exhibited by males as adults and the presence or absence of horns. The nonlinear scaling relationship between the body size and horn length of males bred in the laboratory did not differ from the pattern of variation present in natural populations, suggesting that nutritional conditions account for variation in male morphology in natural populations as well. We discuss our results by extending ideas proposed to explain the evolution of conditional expression of alternative phenotypes in physically heterogeneous environments toward incorporating facultative expression of secondary sexual traits. We use this synthesis to begin characterizing the potential origin and subsequent evolution of facultative horn expression in onthophagine beetles.  相似文献   

16.
Sexual selection via female mate choice can result in the evolution of elaborate male traits that incur substantial costs for males. Despite increased interest in how female mating preferences contribute to the evolution of male traits, few studies have directly quantified the locomotor costs of such traits. A sexually selected trait that could affect movement costs is the sword exhibited by male swordtail fishes: while longer swords may increase male mating success, they could negatively affect the hydrodynamic aspects of swimming activities. Here, we examine the energetic costs of the sword in Xiphophorus montezumae by experimentally manipulating sword length and measuring male aerobic metabolism during two types of activity, routine swimming and courtship swimming. Direct measurements of oxygen consumption indicate that males with longer swords expend more energy than males with shortened swords during both types of swimming. In addition, the sword increases the cost of male courtship. Thus, while sexual selection via female choice favours long swords, males with longer swords experience higher metabolic costs during swimming, suggesting that sexual and natural selection have opposing effects on sword evolution. This study demonstrates a hydrodynamic cost of a sexually selected trait. In addition, this study discriminates between the cost of a sexually selected trait used in courtship and other courtship costs.  相似文献   

17.
We examined the relationships between male body and horn sizes and mating duration in the Japanese horned beetle, Allomyrina dichotoma. Smaller males possessing shorter horns spent more time for copulation with a female and mounting the female without copulation. The results of multiple regression analyses indicate that the horn length is a determining factor for the time spent by the males during mating. A previous study has documented that the horn length of male A. dichotoma primarily determined the outcomes of aggressive male–male interactions; hence, predicts access to females. Therefore, instead of fighting for females, males possessing short horns may maximize their fertilization success by mating longer with the few females they have access to.  相似文献   

18.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

19.
A model for the joint evolution of a secondary sexual male trait Z and a female mating preference Y is discussed. Recurrence relations for the moments of (Z, Y) are given under the assumption that the traits are binormally distributed. It is shown that female preference for a male character can lead to an equilibrium distribution of the male trait with non-zero variances. The conditions under which the distribution is stable, are given. Unstable situations, in which a continued exaggeration of the male trait occurs, are described. It is demonstrated that the effect of sexual selection on the evolution of the male trait depends on the intensity of natural selection, i.e. the effect of the sexual selection increases when the intensity of natural selection is reduced. The effect of the female preference on the male trait also increases with increasing availability of males. This provides a link to several ecological conditions which have generally been known to be correlated with the degree of sexual selection. Furthermore, it is demonstrated that perturbations away from the equilibrium may cause rapid evolution of the male character, eventually leading to speciation.  相似文献   

20.
How selection pressures acting within species interact with developmental constraints to shape macro‐evolutionary patterns of species divergence is still poorly understood. In particular, whether or not sexual selection affects evolutionary allometry, the increase in trait size with body size across species, of secondary sexual characters, remains largely unknown. In this context, bovid horn size is an especially relevant trait to study because horns are present in both sexes, but the intensity of sexual selection acting on them is expected to vary both among species and between sexes. Using a unique data set of sex‐specific horn size and body mass including 91 species of bovids, we compared the evolutionary allometry between horn size and body mass between sexes while accounting for both the intensity of sexual selection and phylogenetic relationship among species. We found a nonlinear evolutionary allometry where the allometric slope decreased with increasing species body mass. This pattern, much more pronounced in males than in females, suggests either that horn size is limited by some constraints in the largest bovids or is no longer the direct target of sexual selection in very large species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号