首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are examining the relationship of RNA metabolism and de novo pyrimidine synthesis as parameters of malignant transformation. These initial experiments on normal hamster embryo fibroblasts have shown that excreted nucleosides are markers for intracellular RNA metabolism. We employed affinity chromatography to concentrate the nucleosides in the medium and sensitive column chromatographic procedures to quantitatively measure them. The excretion of pyrimidine nucleoside from hamster embryo fibroblasts in sulture was found to be dependent on the growth state of the cells, with the greatest accumulation occurring cell quiescence. The major nucleoside excretion products, uridine and cytidine, were both normal end products of RNA metabolism and the major nucleoside excretion products from cultured cells. The modified nucleosides N-1-methylguanosine, N-2-methylguanosine, N-2-dimethylguanosine, N-4-acetylcytidine, N-1-methylinosine, pseudouridine, N-1-methyladenosine, N-3-methylcytidine, and 5-methyleycytidine were found, as were several unidentified nucleosides.  相似文献   

2.
1. The following methods for hydrolysis of methyl-(14)C-labelled RNA, and for chromatographic isolation and determination of the products, were investigated: enzymic digestion to nucleosides at pH6 or 8; alkaline hydrolysis and conversion into nucleosides; hydrolysis by acid to pyrimidine nucleotides and purine bases, or completely to bases; chromatography on Dowex 50 (NH(4) (+) form) at pH6 or 8.9, or on Dowex 50 (H(+) form), or on Sephadex G-10. 2. The suitability of the various methods for determination of methylation products was assessed. The principal product, 7-methylguanosine, was unstable under the conditions used for determinations of nucleosides. 3- and 7-Methyladenine and 3- and 7-methylguanine are best determined as bases; 1-methyladenine and 3-methylcytosine can be isolated as either nucleosides or bases; O(6)-methylguanine is unstable under the acid hydrolysis conditions used and can be determined as the nucleoside; 3-methyluracil was detected, but may be derived from methylation of the ionized form of uracil. 3. Differences between the patterns of methylation of RNA and homopolyribonucleotides by the N-methyl-N-nitroso compounds and dimethyl sulphate were found: the nitroso compounds were able to methylate O-6 of guanine, were relatively more reactive at N-7 of adenine and probably at N-3 of guanine, but less reactive at N-1 of adenine, N-3 of cytosine and probably at N-3 of uridine. They probably reacted more with the ribose-phosphate chain, but no products from this were identified. 4. The possible influences of these differences on biological action of the methylating agents is discussed. Nitroso compounds may differ principally in their ability to induce miscoding in the Watson-Crick sense by reaction at O-6 of guanine. Both types of agent may induce miscoding to a lesser extent through methylation at N-3 of guanine; both can methylate N atoms, presumably preventing Watson-Crick hydrogen-bonding. N-Methyl-N-nitrosourea can degrade RNA, possibly through phosphotriester formation, but this mechanism is not proven.  相似文献   

3.
A series of novel 1,2,3-triazole nucleosides linked to DNA nucleobases were prepared via copper(I)-catalyzed 1,3-dipolar cycloaddition of N-9 propargylpurines or N-1 propargylpyrimidines with the tolouyl protected 1-azido-2-deoxyribofuranose 2 followed by treatment with NaOMe/MeOH or aq NH3. The antiviral activity of such compounds against selected RNA viruses is reported. The strongly fluorescent 1,2,3-triazole compounds 16 and 17 were synthesized from propargylated uracil 1a and propargylated adenine 1c with coumarin azide 15, and the fluorescence properties were studied. The nucleosides 4 and 6 were incorporated into DNA using the phosphoramidite building blocks and employed in solid-phase synthesis. Melting experiments demonstrated that such 1,2,3-triazole nucleosides have a negative impact on the duplex stability when they are placed opposite to the canonical bases as well as abasic sites. The nucleobases attached to the triazole ring cannot involve in the base pair formation with the opposite bases because of the structural variations induced by the triazole ring. The stacking of such nucleosides when positioned at the end of oligonucleotides retains the stability of DNA duplexes. The duplex structures were studied by molecular modelling which support the results of melting experiments.  相似文献   

4.
Wyosine la, one of the fluorescent hypermodified Y nucleosides found in tRNAsPhe, was synthesized chemically from its biogenetic precursor guanosine 2. The route involved transformation of 2 into the tricyclic structure 3a and subsequent methylation at N-4. The major products of various methylation procedures were isomers of wyosine, methylated at N-5 (3b) or at N-1 (4). Mesoionic compound 4 is a new analogue of 7-methylguanosine 5, modified nucleoside occurring in the unique positions in transfer, messenger and ribosomal RNAs. The chromatographic and spectral characteristics of wyosine and its isomers is given.  相似文献   

5.
Since the discovery of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-didehydro-2',3'-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2',3'-didehydro-2',3'dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

6.
Abstract

Three branched nucleoside dimers containing a 1,2,3-triazole linkage have been synthesized using 1,3-dipolar cycloaddition of N-3 or C-5 acetylene nucleosides with 3′-azido-3′-deoxythymidine.  相似文献   

7.
Natural abundance, proton-decoupled 13C magnetic resonance spectroscopy is shown to be a useful technique for identifying the mercury (II) binding sites on nucleosides and especially thiolated nucleosides. Measurements made on dimethyl sulfoxide-d6 solutions, 0.5 M in nucleoside and 0.15 M in mercury, reveal that both CH3 HgCl and HgCl2 bind principally to the sulfur atoms of s6 Guo and s8 Guo. The 13C NMR spectra of the unthiolated nucleosides in the presence of excess (4:1) mercury reveal that HgCl2 binds to N-3 of cytidine, to more than one site on adenosine and guanosine, but not strongly to uridine. Excess HgCl2 shifts the thiocarbonyl carbon atoms in s6 Guo and s8 Guo approx. 16 ppm upfield compared to the free nucleosides, and there is evidence for additional coordination to N-7 of s6 Guo. Binding to the ribose hydroxyl groups is clearly ruled out. At least in these instances, 13C NMR proves to be useful for assigning the mercury (II) binding sites, complementing the results of proton magnetic resonance studies. Proton NMR data for the binding of CH3 HgCl and HgCl2 to s6 Guo and s8 Guo are also presented.  相似文献   

8.
G N Bennett  P T Gilham 《Biochemistry》1975,14(14):3152-3158
A number of synthetic methods for the preparation of the 2-O-(alpha-methoxyethyl) derivatives of the 5-diphosphates of adenosine, cytidine, guanosine, and uridine have been studied in order to provide nucleotide substrates that can be applied to the synthesis of specific oligoribonucleotides using polynucleotide phosphorylase. The reaction of nucleoside 5-diphosphates with methyl vinyl ether for a limited time produces low yields of the corresponding 2-O-(alpha-methoxyethyl) derivatives because the rate of methoxyethylation of the 3-hydroxyl groups. A study of the rates of acidic hydrolysis of alpha-methoxyethyl groups in the 2 and 3 positions of nucleosides and nucleotides has been made, and the results obtained form the basis of a more efficient method for the synthesis of the blocked nucleoside diphosphates. The method involves the reaction of nucleoside 5-diphosphates with methyl vinyl ether to give the corresponding 2,3-di-O-(alpha-methoxyethyl)nucleoside 5-diphosphates, and exploits the fact that, in the acidic hydrolysis of these derivatives, the rate of removal of the 3-methoxyethyl group is about twice that of the group in the 2 position. Alternative syntheses were based on the phosphorylation of methoxyethylated nucleosides and nucleotides. The derivatives, 2-O- and 2,3-di-O-(alpha-methoxyethyl)uridine, were prepared by the methoxyethylation of 3,5-di-O-acetyluridine and 5-O-acetyluridine followed by removal of the acetyl groups. The corresponding guanosine derivatives were made by the synthetic routes: (i) guanosine leads to O-2,O-3,O-5,N-2-tetrabenzoylguanosine leads to 2-N-benzoylguanosine leads to O3-acetyl-N-2,O5-dibenzoylguanosine leads to 2-O-(alpha-methoxyethyl)guanosine, and (ii) 2,3-O-isopropylideneguanosine leads to N-2,O5-diacetyl-2,3-O-isopropylideneguanosine leads to N-2,O-5-diacetylguanosine leads to 2,3-di-O-(alpha-methoxyethyl)guanosine. These methoxyethylated nucleosides were converted to the corresponding 5-phosphates by reaction with cyanoethyl phosphate and dicyclohexylcarbodiimide, and then to the corresponding 5-diphosphates by subsequent reaction with 1,1-carbonyldiimidazole and inorganic phosphate.  相似文献   

9.
The naturally occurring DNA-nucleopeptide H-Asp-Ser[5'-pAAAGTAAGCC-3']-Glu-OH was prepared via a solid-phase phosphite triester approach using N-2-(tert-butyldiphenylsilyloxymethyl)benzoyl protected nucleosides. The oligonucleotide was linked via the extremely base-labile oxalyl ester anchor to the solid support.  相似文献   

10.
Four new bromoacetamido pyrimidine nucleosides have been synthesized and are affinity labels for the active site of bovine pancreatic ribonuclease A (RNase A). All bind reversibly to the enzyme and react covalently with it, resulting in inactivation. The binding constants Kb and the first-order decomposition rate constants k3 have been determined for each derivative. They are the following: 3'-(bromoacetamido)-3'-deoxyuridine, Kb = 0.062 M, k3 = 3.3 X 10(-4) s-1; 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil, Kb = 0.18 M, k3 = 1700 X 10(-4) s-1; 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil, Kb = 0.038 M, k3 = 6.6 X 10(-4) s-1; and 3'-(bromoacetamido)-3'-deoxythymidine, Kb = 0.094 M, k3 = 2.7 X 10(-4) s-1. 3'-(Bromoacetamido)-3'-deoxyuridine reacts exclusively with the histidine-119 residue, giving 70% of a monoalkylated product substituted at N-1, 14% of a monoalkylated derivative substituted at N-3, and 16% of a dialkylated species substituted at both N-1 and N-3. Both 2'-(bromoacetamido)-2'-deoxyxylofuranosyluracil and 3'-(bromoacetamido)-3'-deoxyarabinofuranosyluracil react with absolute specificity at N-3 of the histidine-12 residue. 3'-(Bromoacetamido)-3'-deoxythymidine alkylates histidines-12 and -119. The major product formed in 57% yield is substituted at N-3 of histidine-12. A monoalkylated derivative, 8% yield, is substituted at N-1 of histidine-119. A disubstituted species is formed in 14% yield and is alkylated at both N-3 of histidine-12 and N-1 of histidine-119. A specific interaction of the "down" 2'-OH group, unique to 3'-(bromoacetamido)-3'-deoxyuridine, serves to orient the 3'-bromoacetamido residue close to the imidazole ring of histidine-119. The 2'-OH group of 3',5'-dinucleoside phosphate substrates may serve a similar role in the catalytic mechanism, allowing histidine-119 to protonate the leaving group in the transphosphorylation step. (Bromoacetamido)nucleosides are bound in the active site of RNase A in a variety of distinct conformations which are responsible for the different specificities and alkylation rates.  相似文献   

11.
3-methyl-2'-deoxyguanosine (1a) is obtained from 2'-deoxyguanosine by a reaction sequence involving conversion into tricyclic 1,N-2-isopropeno derivative (4-desmethyl-2'-deoxywyosine, 3a) followed by methylation which results in 2'-deoxywyosine (2a) and final removal of the 1,N-2 blocking system. Compounds 1a and 2a undergo spontaneous hydrolytic cleavage of their glycosidic bonds at pH 7, 37 degrees C, which makes them the most labile of all known nucleosides composed of structural units occurring in nature.  相似文献   

12.

Since the discovery of 3′-azido-3′-deoxythymidine (AZT) and 2′,3′-didehydro-2′,3′-dideoxythymidine (d4T) as potent and selective inhibitors of the replication of human immunodeficiency virus (HIV), there has been a growing interest for the synthesis of 2′,3′-didehydro-2′,3′-dideoxynucleosides with electron withdrawing groups on the sugar moiety. Here we described an efficient method for the synthesis of such nucleoside analogs bearing structural features of both AZT and d4T. The key intermediate, 3-azido-1,2-bis-O-acetyl-5-O-benzoyl-3-deoxy-D-ribofuranose, 5 was synthesized from commercially available D-xylose in five steps, from which a series of pyrimidine and purine nucleosides were synthesized in high yields. The resultant protected nucleosides were converted to target nucleosides using appropriate chemical modifications. The final nucleosides were evaluated as potential anti-HIV agents.  相似文献   

13.
Several N-3 substituted carboranyl Thd analogs were synthesized. These agents as well as some non-boronated nucleosides were evaluated in phosphoryl transfer assays with recombinant human TK1 and TK2. For some carboranyl thymidine analogs, TK1 phosphorylation rates approached 38% that of thymidine. Their in vitro cytotoxicty appeared to correlate with the TK1 levels in the tested cells. In some cases increased uptake in tumor cell nuclei compared with the surrounding cytoplasm was detected in vitro.  相似文献   

14.
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2'-substituted nucleosides as inhibitors of HCV replication. The 5'-triphosphates of 2'-C-methyladenosine and 2'-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2'-O-methylcytidine inhibit HCV RNA replication. The 5'-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2'-C-methyladenosine triphosphate than 2'-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2'-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitro enzyme assays. Thus, the 2'-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.  相似文献   

15.
Maturation of a hypermodified nucleoside in transfer RNA.   总被引:10,自引:2,他引:8       下载免费PDF全文
E. coli C6 rel- met- cys- was cultured in a fully supplemented medium and in media lacking cysteine or methionine. tRNA isolated from the three cultures containted, respectively, a normal complement of modified nucleosides; a deficiency in thiolated nucleosides and a deficiency in methylated nucleosides. Both sulfur-deficient tRNA and methyl-deficient tRNA contained large amounts of N-6- (delta-2-isopentenyl) adenosine and small amounts of the 2-methylthio derivative. Methyl-deficient tRNA contained, in addition a large amount of a cytokinin active, differently modified nucleoside that is believed to be a sulfur derivative of N6-(delta-2-isopentenyl) adenosine. The structure of this compound is unknown. When methly-deficient tRNA and the precusor the tRNA-Tyr su3-+ A25 were enzymatically methylated in vitro, methyl groups were incorporated into derivatives of isopentenyladenosine. These results indicate that the biosynthesis of the 2-methylthio derivative of isopentenyladenosine may occur in a sequential manner, i.e., thiolation of isopentenyladenosine followed by methylation.  相似文献   

16.
The chemically synthesized endoperoxide compound N-89 and its derivative N-251 were shown to have potent antimalarial activity. We previously demonstrated that N-89 and N-251 potently inhibited the RNA replication of hepatitis C virus (HCV), which belongs to the Flaviviridae family. Since antimalarial and anti-HCV mechanisms have not been clarified, we were interested whether N-89 and N-251 possessed the activity against viruses other than HCV. In this study, we examined the effects of N-89 and N-251 on other flaviviruses (dengue virus and Japanese encephalitis virus) and hepatitis viruses (hepatitis B virus and hepatitis E virus). Our findings revealed that N-89 and N-251 moderately inhibited the RNA replication of Japanese encephalitis virus and hepatitis E virus, although we could not detect those anti-dengue virus activities. We also observed that N-89 and N-251 moderately inhibited the replication of hepatitis B virus at the step after viral translation. These results suggest the possibility that N-89 and N-251 act on some common host factor(s) that are necessary for viral replications, rather than the possibility that N-89 and N-251 directly act on the viral proteins except for HCV. We describe a new type of antiviral reagents, N-89 and N-251, which are applicable to multiple different viruses.  相似文献   

17.
Weak cation-exchange (WCX) and HILIC modes columns were prepared by on-column polymerization of acrylic acid on monolithic silica capillary columns modified with N-(3-triethoxysilylpropyl)methacrylamide anchor groups. The polymer-coated columns could be used for HILIC mode separation of pyridylamino (PA)-sugars and peptides including a tryptic digest of BSA, while for weak cation-exchange mode for the separation of proteins and nucleosides even at high linear velocity. The poly(acrylic acid) coated monolithic silica capillary columns showed greater retention toward PA-sugars than a polyacrylamide coated monolithic silica capillary columns prepared in the same manner. Proteins and nucleosides were separated effectively at pH 6.9 using the same column. The column provided fair permeability after the polymer-coating step. High-speed separation of proteins at u=4.66 mm/s with high efficiency was shown to be possible, while high-speed separation of nucleosides has achieved within one minute using the column at u=8.67 mm/s, suggesting that the column will be suitable for the second dimension separation of multidimensional HPLC systems.  相似文献   

18.
Pyrimidine nucleosides (or their 5'-aldehydes) when treated with DAST give O2,5'-(fluoro)-anhydronucleosides. If this is prevented by blocking N-3 or O4, the desired 5'-deoxy-5'-(di)-fluoronucleoside is accompanied by the production of a compound resulting from migration of the base following scission of the N-1-->C-1' bond and formation of O2-->C-5'. This is a particular example of a much more general phenomenon, seen when suitably substituted ribofuranoses are treated with DAST.  相似文献   

19.
20.
6-Chloromethylbenzo[a]pyrene (6-CMBP) labeled with 13C in the chloromethyl group was used as a model for those carcinogens which form essentially free carbocations. Using 13C-NMR to identify products, the selectivity with which this electrophile modifies nucleosides was investigated. At pH 7, guanosine and deoxyguanosine are the most nucleophilic nucleosides toward the carbocation generated by solvolysis of 6-CMBP. Attack at N-7 predominates over attack at N-2. At higher pH, the nucleophilicity of guanosine and deoxyguanosines increases markedly. In addition, the site of modification changes to N-1 with secondary modification at O-6. The pH dependence of the rate of this reaction implicates a group with pK-value approx. 8.7 which was assigned to the hydrogen on N-1. The presence of a methyl group on the N-7 position of guanosine lowers this pK-value to approx. 7.2. Consequently, N7-methylguanosine shows the high nucleophilicity at physiological pH that guanosine has at high pH. These observations lead to the suggestion of a one base: two-site model for chemical carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号