首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To study synapse formation by neuroligins, we co-cultured hippocampal neurons with COS cells expressing wild type and mutant neuroligins. The large size of COS cells makes it possible to test the effect of neuroligins presented over an extended surface area. We found that a uniform lawn of wild type neuroligins displayed on the cell surface triggers the formation of hundreds of uniformly sized, individual synaptic contacts that are labeled with neurexin antibodies. Electron microscopy revealed that these artificial synapses contain a presynaptic active zone with docked vesicles and often feature a postsynaptic density. Neuroligins 1, 2, and 3 were active in this assay. Mutations in two surface loops of neuroligin 1 abolished neuroligin binding to neurexin 1beta, a presumptive presynaptic binding partner for postsynaptic neuroligins, and blocked synapse formation. An analysis of mutant neuroligins with an amino acid substitution that corresponds to a mutation described in patients with an autistic syndrome confirmed previous reports that these mutant neuroligins have a compromised capacity to be transported to the cell surface. Nevertheless, the small percentage of mutant neuroligins that reached the cell surface still induced synapse formation. Viewed together, our data suggest that neuroligins generally promote artificial synapse formation in a manner that is associated with beta-neurexin binding and results in morphologically well differentiated synapses and that a neuroligin mutation found in autism spectrum disorders impairs cell-surface transport but does not completely abolish synapse formation activity.  相似文献   

3.
Lieber T  Kidd S  Struhl G 《Neuron》2011,70(3):468-481
Neurexin and neuroligin, which undergo heterophilic interactions with each other at the synapse, are mutated in some patients with autism spectrum disorder, a set of disorders characterized by deficits in social and emotional learning. We have explored the role of neurexin and neuroligin at sensory-to-motor neuron synapses of the gill-withdrawal reflex in Aplysia, which undergoes sensitization, a simple form of learned fear. We find that depleting neurexin in the presynaptic sensory neuron or neuroligin in the postsynaptic motor neuron abolishes both long-term facilitation and the associated presynaptic growth induced by repeated pulses of serotonin. Moreover, introduction into the motor neuron of the R451C mutation of neuroligin-3 linked to autism spectrum disorder blocks both intermediate-term and long-term facilitation. Our results suggest that activity-dependent regulation of the neurexin-neuroligin interaction may govern transsynaptic signaling required for the storage of long-term memory, including emotional memory that may be impaired in autism spectrum disorder.  相似文献   

4.
Neurexins and neuroligins play an essential role in synapse function, and their alterations are linked to autistic spectrum disorder. Interactions between neurexins and neuroligins regulate inhibitory and excitatory synaptogenesis in vitro through a "splice-insert signaling code." In particular, neurexin 1beta carrying an alternative splice insert at site SS#4 interacts with neuroligin 2 (found predominantly at inhibitory synapses) but much less so with other neuroligins (those carrying an insert at site B and prevalent at excitatory synapses). The structure of neurexin 1beta+SS#4 reveals dramatic rearrangements to the "hypervariable surface," the binding site for neuroligins. The splice insert protrudes as a long helix into space, triggers conversion of loop beta10-beta11 into a helix rearranging the binding site for neuroligins, and rearranges the Ca(2+)-binding site required for ligand binding, increasing its affinity. Our structures reveal the mechanism by which neurexin 1beta isoforms acquire neuroligin splice isoform selectivity.  相似文献   

5.
Neuroligins are post-synaptic cell adhesion molecules that promote synaptic maturation and stabilization upon binding with pre-synaptic partners, the alpha- and beta-neurexins. Using a combination of analytical ultracentrifugation, small angle X-ray, and neutron scattering, we have characterized the low-resolution three-dimensional structure of the extracellular domain of the neuroligins, free in solution, and in complex with beta-neurexin. The globular extracellular domain of the neuroligins forms stable homodimers through a four-helix bundle typical of the cholinesterases and other members of the alpha/beta-hydrolase fold family. The presence of the stalk region adds to the extracellular domain of neuroligin-1 an elongated structure, suggesting a rod-like nature of the stalk domain. Sedimentation equilibrium coupled with solution scattering data of the beta-neurexin/neuroligin-1 complex indicated a 2:2 stoichiometry where two beta-neurexin molecules bind to a neuroligin-1 dimer. Deuteration of neurexin allowed us to collect neutron scattering data that, in combination with other biochemical techniques, provide a basis for optimizing the positioning of each component in a detailed computational model of the neuroligin/neurexin complex. As several mutations of both neurexin and neuroligin genes have been linked to autism spectrum disorders and mental retardation, these new structures provide an important framework for the study of altered structure and function of these synaptic proteins.  相似文献   

6.
Neuroligins are post-synaptic cell adhesion molecules that promote synaptic maturation and stabilization upon binding with pre-synaptic partners, the α- and β-neurexins. Using a combination of analytical ultracentrifugation, small angle X-ray, and neutron scattering, we have characterized the low-resolution three-dimensional structure of the extracellular domain of the neuroligins, free in solution, and in complex with β-neurexin. The globular extracellular domain of the neuroligins forms stable homodimers through a four-helix bundle typical of the cholinesterases and other members of the α/β-hydrolase fold family. The presence of the stalk region adds to the extracellular domain of neuroligin-1 an elongated structure, suggesting a rod-like nature of the stalk domain. Sedimentation equilibrium coupled with solution scattering data of the β-neurexin/neuroligin-1 complex indicated a 2:2 stoichiometry where two β-neurexin molecules bind to a neuroligin-1 dimer. Deuteration of neurexin allowed us to collect neutron scattering data that, in combination with other biochemical techniques, provide a basis for optimizing the positioning of each component in a detailed computational model of the neuroligin/neurexin complex. As several mutations of both neurexin and neuroligin genes have been linked to autism spectrum disorders and mental retardation, these new structures provide an important framework for the study of altered structure and function of these synaptic proteins.  相似文献   

7.
Neurexins are cell adhesion proteins that interact with neuroligin and other ligands at the synapse. In humans, mutations in neurexin or neuroligin genes have been associated with autism and other mental disorders. The human neurexin and neuroligin genes are orthologous to the Caenorhabditis elegans genes nrx‐1 and nlg‐1, respectively. Here we show that nrx‐1‐deficient mutants are defective in exploratory capacity, sinusoidal postural movements and gentle touch response. Interestingly, the exploratory behavioral phenotype observed in nrx‐1 mutants was markedly different to nlg‐1‐deficient mutants; thus, while the former had a ‘hyper‐reversal’ phenotype increasing the number of changes of direction with respect to the wild‐type strain, the nlg‐1 mutants presented a ‘hypo‐reversal’ phenotype. On the other hand, the nrx‐1‐ and nlg‐1‐defective mutants showed similar abnormal sinusoidal postural movement phenotypes. The response of these mutant strains to aldicarb (acetylcholinesterase inhibitor), levamisole (ACh agonist) and pentylenetetrazole [gamma‐aminobutyric (GABA) receptor antagonist], suggested that the varying behavioral phenotypes were caused by defects in ACh and/or GABA inputs. The defective behavioral phenotypes of nrx‐1‐deficient mutants were rescued in transgenic strains expressing either human alpha‐ or beta‐NRXN‐1 isoforms under the worm nrx‐1 promoter. A previous report had shown that human and rat neuroligins were functional in C. elegans. Together, these results suggest that the functional mechanism underpinning both neuroligin and neurexin in the nematode are comparable to human. In this sense the nematode might constitute a simple in vivo model for understanding basic mechanisms involved in neurological diseases for which neuroligin and neurexin are implicated in having a role.  相似文献   

8.
To investigate the expression levels of neurexins and neuroligins in the enteric nervous system (ENS) in Hirschsprung Disease (HSCR). Longitudinal muscles with adherent mesenteric plexus were obtained by dissection of the fresh gut wall of mice, guinea pigs, and humans. Double labeling of neurexin I and Hu (a neuron marker), neuroligin 1 and Hu, neurexin I and synaptophysin (a presynaptic marker), and neuroligin 1 and PSD95 (a postsynaptic marker) was performed by immunofluorescence staining. Images were merged to determine the relative localizations of the proteins. Expression levels of neurexin and neuroligin in different segments of the ENS in HSCR were investigated by immunohistochemistry. Neurexin and neuroligin were detected in the mesenteric plexus of mice, guinea pigs, and humans with HSCR. Neurexin was located in the presynapse, whereas neuroligin was located in the postsynapse. Expression levels of neurexin and neuroligin were significant in the ganglionic colonic segment of HSCR, moderate in the transitional segment, and negative in the aganglionic colonic segment. The expressions of neurexin and neuroligin in the transitional segments were significantly down-regulated compared with the levels in the normal segments (P < 0.05). Expression levels of neurexin and neuroligin in ENS are significantly down-regulated in HSCR, which may be involved in the pathogenesis of HSCR.  相似文献   

9.
10.
The Making of Neurexins   总被引:14,自引:2,他引:12  
  相似文献   

11.
Neuroligins are postsynaptic cell-adhesion proteins that associate with their presynaptic partners, the neurexins. Using small-angle X-ray scattering, we determined the shapes of the extracellular region of several neuroligin isoforms in solution. We conclude that the neuroligins dimerize via the characteristic four-helix bundle observed in cholinesterases, and that the connecting sequence between the globular lobes of the dimer and the cell membrane is elongated, projecting away from the dimer interface. X-ray scattering and neutron contrast variation data show that two neurexin monomers, separated by 107 A, bind at symmetric locations on opposite sides of the long axis of the neuroligin dimer. Using these data, we developed structural models that delineate the spatial arrangements of different neuroligin domains and their partnering molecules. As mutations of neurexin and neuroligin genes appear to be linked to autism, these models provide a structural framework for understanding altered recognition by these proteins in neurodevelopmental disorders.  相似文献   

12.
Postsynaptic neuroligins are thought to perform essential functions in synapse validation and synaptic transmission by binding to, and dimerizing, presynaptic α‐ and β‐neurexins. To test this hypothesis, we examined the functional effects of neuroligin‐1 mutations that impair only α‐neurexin binding, block both α‐ and β‐neurexin binding, or abolish neuroligin‐1 dimerization. Abolishing α‐neurexin binding abrogated neuroligin‐induced generation of neuronal synapses onto transfected non‐neuronal cells in the so‐called artificial synapse‐formation assay, even though β‐neurexin binding was retained. Thus, in this assay, neuroligin‐1 induces apparent synapse formation by binding to presynaptic α‐neurexins. In transfected neurons, however, neither α‐ nor β‐neurexin binding was essential for the ability of postsynaptic neuroligin‐1 to dramatically increase synapse density, suggesting a neurexin‐independent mechanism of synapse formation. Moreover, neuroligin‐1 dimerization was not required for either the non‐neuronal or the neuronal synapse‐formation assay. Nevertheless, both α‐neurexin binding and neuroligin‐1 dimerization were essential for the increase in apparent synapse size that is induced by neuroligin‐1 in transfected neurons. Thus, neuroligin‐1 performs diverse synaptic functions by mechanisms that include as essential components of α‐neurexin binding and neuroligin dimerization, but extend beyond these activities.  相似文献   

13.
Thyagarajan A  Ting AY 《Cell》2010,143(3):456-469
The functions of trans-synaptic adhesion molecules, such as neurexin and neuroligin, have been difficult to study due to the lack of methods to directly detect their binding in living neurons. Here, we use biotin labeling of intercellular contacts (BLINC), a method for imaging protein interactions based on interaction-dependent biotinylation of a peptide by E. coli biotin ligase, to visualize neurexin-neuroligin trans-interactions at synapses and study their role in synapse development. We found that both developmental maturation and acute synaptic activity stimulate the growth of neurexin-neuroligin adhesion complexes via a combination of neurexin and neuroligin surface insertion and internalization arrest. Both mechanisms require NMDA receptor activity. We also discovered that disruption of activity-induced neurexin-neuroligin complex growth prevents recruitment of the AMPA receptor, a hallmark of mature synapses. Our results provide support for neurexin-neuroligin function in synapse maturation and introduce a general method to study intercellular protein-protein interactions.  相似文献   

14.
Previous studies suggested that postsynaptic neuroligins form a trans-synaptic complex with presynaptic beta-neurexins, but not with presynaptic alpha-neurexins. Unexpectedly, we now find that neuroligins also bind alpha-neurexins and that alpha- and beta-neurexin binding by neuroligin 1 is regulated by alternative splicing of neuroligin 1 (at splice site B) and of neurexins (at splice site 4). In neuroligin 1, splice site B is a master switch that determines alpha-neurexin binding but leaves beta-neurexin binding largely unaffected, whereas alternative splicing of neurexins modulates neuroligin binding. Moreover, neuroligin 1 splice variants with distinct neurexin binding properties differentially regulate synaptogenesis: neuroligin 1 that binds only beta-neurexins potently stimulates synapse formation, whereas neuroligin 1 that binds to both alpha- and beta-neurexins more effectively promotes synapse expansion. These findings suggest that neuroligin binding to alpha- and beta-neurexins mediates trans-synaptic cell adhesion but has distinct effects on synapse formation, indicating that expression of different neuroligin and neurexin isoforms specifies a trans-synaptic signaling code.  相似文献   

15.
16.
Despite great functional diversity, characterization of the α/β-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the α/β-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the α/β-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.  相似文献   

17.
Synaptogenesis requires formation of trans-synaptic complexes between neuronal cell-adhesion receptors. Heterophilic receptor pairs, such as neurexin Iβ and neuroligin, can mediate distinct intracellular signals and form different cytoplasmic scaffolds in the pre- and post-synaptic neuron, and may be particularly important for synaptogenesis. However, the functions of neurexin and neuroligin depend on their distribution in the synapse. Neuroligin has been experimentally assigned to the post-synaptic membrane, while the localization of neurexin remains unclear. To study the subcellular distribution of neurexin Iβ and neuroligin in mature cerebrocortical synapses, we have developed a novel method for the physical separation of junctional membranes and their direct analysis by western blotting. Using urea and dithiothreitol, we disrupted trans-synaptic protein links, without dissolving the lipid phase, and fractionated the pre- and post-synaptic membranes. The purity of these fractions was validated by electron microscopy and western blotting using multiple synaptic markers. A quantitative analysis has confirmed that neuroligin is localized strictly in the post-synaptic membrane. We have also demonstrated that neurexin Iβ is largely (96%) pre-synaptic. Thus, neurexin Iβ and neuroligin normally form trans-synaptic complexes and can transduce bidirectional signals.  相似文献   

18.
We report what to our knowledge is a new method to characterize kinetic rates between cell-surface-attached adhesion molecules. Cells expressing specific membrane receptors are surface-labeled with quantum dots coated with their respective ligands. The progressive diminution in the total number of surface-diffusing quantum dots tracked over time collectively reflects intrinsic ligand/receptor interaction kinetics. The probability of quantum dot detachment is modeled using a stochastic analysis of bond formation and dissociation, with a small number of ligand/receptor pairs, resulting in a set of coupled differential equations that are solved numerically. Comparison with the experimental data provides an estimation of the kinetic rates, together with the mean number of ligands per quantum dot, as three adjustable parameters. We validate this approach by studying the calcium-dependent neurexin/neuroligin interaction, which plays an important role in synapse formation. Using primary neurons expressing neuroligin-1 and quantum dots coated with purified neurexin-1β, we determine the kinetic rates between these two binding partners and compare them with data obtained using other techniques. Using specific molecular constructs, we also provide interesting information about the effects of neurexin and neuroligin dimerization on the kinetic rates. As it stands, this simple technique should be applicable to many types of biological ligand/receptor pairs.  相似文献   

19.
The molecular pathogenesis of ASD (autism spectrum disorder), one of the heritable neurodevelopmental disorders, is not well understood, although over 15 autistic‐susceptible gene loci have been extensively studied. A major issue is whether the proteins that these candidate genes encode are involved in general function and signal transduction. Several mutations in genes encoding synaptic adhesion molecules such as neuroligin, neurexin, CNTNAP (contactin‐associated protein) and CADM1 (cell‐adhesion molecule 1) found in ASD suggest that impaired synaptic function is the underlying pathogenesis. However, knockout mouse models of these mutations do not show all of the autism‐related symptoms, suggesting that gain‐of‐function in addition to loss‐of‐function arising from these mutations may be associated with ASD pathogenesis. Another finding is that family members with a given mutation frequently do not manifest autistic symptoms, which possibly may be because of gender effects, dominance theory and environmental factors, including hormones and stress. Thus epigenetic factors complicate our understanding of the relationship between these mutated genes and ASD pathogenesis. We focus in the present review on findings that ER (endoplasmic reticulum) stress arising from these mutations causes a trafficking disorder of synaptic receptors, such as GABA (γ‐aminobutyric acid) B‐receptors, and leads to their impaired synaptic function and signal transduction. In the present review we propose a hypothesis that ASD pathogenesis is linked not only to loss‐of‐function but also to gain‐of‐function, with an ER stress response to unfolded proteins under the influence of epigenetic factors.  相似文献   

20.
Comparisons of protein sequence via cyclic training of Hidden Markov Models (HMMs) in conjunction with alignments of three-dimensional structure, using the Combinatorial Extension (CE) algorithm, reveal two putative EF-hand metal binding domains in acetylcholinesterase. Based on sequence similarity, putative EF-hands are also predicted for the neuroligin family of cell surface proteins. These predictions are supported by experimental evidence. In the acetylcholinesterase crystal structure from Torpedo californica, the first putative EF-hand region binds the Zn2+ found in the heavy metal replacement structure. Further, the interaction of neuroligin 1 with its cognate receptor neurexin depends on Ca2+. Thus, members of the alpha,beta hydrolase fold family of proteins contain potential Ca2+ binding sites, which in some family members may be critical for heterologous cell associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号