首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.  相似文献   

2.
The contribution of Ca2(+)-activated and delayed rectifying K+ channels to the voltage-dependent outward current involved in spike repolarization in mouse pancreatic beta-cells (Rorsman, P., and G. Trube. 1986. J. Physiol. 374:531-550) was assessed using patch-clamp techniques. A Ca2(+)-dependent component could be identified by its rapid inactivation and sensitivity to the Ca2+ channel blocker Cd2+. This current showed the same voltage dependence as the voltage-activated (Cd2(+)-sensitive) Ca2+ current and contributed 10-20% to the total beta-cell delayed outward current. The single-channel events underlying the Ca2(+)-activated component were investigated in cell-attached patches. Increase of [Ca2+]i invariably induced a dramatic increase in the open state probability of a Ca2(+)-activated K+ channel. This channel had a single-channel conductance of 70 pS [( K+]o = 5.6 mM). The Ca2(+)-independent outward current (constituting greater than 80% of the total) reflected the activation of an 8 pS [( K+]o = 5.6 mM; [K+]i = 155 mM) K+ channel. This channel was the only type observed to be associated with action potentials in cell-attached patches. It is suggested that in mouse beta-cells spike repolarization results mainly from the opening of the 8-pS delayed rectifying K+ channel.  相似文献   

3.
4.
NO-induced activation of cGMP-dependent protein kinase (PKG) increases the open probability of large conductance Ca2+-activated K+ channels and results in smooth muscle relaxation. However, the molecular mechanism of channel regulation by the NO-PKG pathway has not been determined on cloned channels. The present study was designed to clarify PKG-mediated modulation of channels at the molecular level. The cDNA encoding the alpha-subunit of the large conductance Ca2+-activated K+ channel, cslo-alpha, was expressed in HEK293 cells. Whole cell and single channel characteristics of cslo-alpha exhibited functional features of native large conductance Ca2+-activated K+ channels in smooth muscle cells. The NO-donor sodium nitroprusside increased outward current 2.3-fold in whole cell recordings. In cell-attached patches, sodium nitroprusside increased the channel open probability (NPo) of cslo-alpha channels 3.3-fold without affecting unitary conductance. The stimulatory effect of sodium nitroprusside was inhibited by the PKG-inhibitor KT5823. Direct application of PKG-Ialpha to the cytosolic surface of inside-out patches increased NPo 3.2-fold only in the presence of ATP and cGMP without affecting unitary conductance. A point mutation of cslo-alpha in which Ser-1072 (the only optimal consensus sequence for PKG phosphorylation) was replaced by Ala abolished the PKG effect on NPo in inside-out patches and the effect of SNP in cell attached patches. These results indicate that PKG activates cslo-alpha by direct phosphorylation at serine 1072.  相似文献   

5.
Ca2(+)-activated K+ channels are present in muscle, nerve, pancreas, macrophages, and renal cells. They are important in such diverse functions as neurotransmitter release, muscle excitability, pancreatic secretion, and cell volume regulation. Although much is known about the biophysics of Ca2(+)-activated K+ channels, the molecular structure, cDNA and amino acid sequences are unknown. We injected size-fractionated mRNA isolated from cultured rabbit kidney medullary thick ascending limb cells in Xenopus oocytes and observed newly expressed K+ currents using two-microelectrode voltage-clamp technique. The expressed K+ currents are Ca2+ dependent and inhibited by charybdotoxin, a specific blocker of Ca2(+)-activated K+ channels. Amplitudes of the current ranged from 30 nA to more than 1 microA at a membrane potential of +30 mV. Reversal potential of the current suggested a K(+)-selective channel. The peak activity of Ca2(+)-activated K+ channels were observed in fractions corresponding to a message RNA with size of approximately 4.5 kilobases.  相似文献   

6.
The properties of the K+ pathway underlying regulatory volume decrease (RVD) in human blood lymphocytes were investigated. Evidence is presented for the existence of three types of K+ conductance in these cells. Ionomycin, a Ca2+ ionophore, induced a K(+)-dependent hyperpolarization, indicating the presence of Ca2(+)-activated K+ channels, which were blocked by charybdotoxin (CTX). CTX also induced a depolarization of the resting membrane potential, even at subphysiological cytosolic [Ca2+]([Ca2+]i), which suggests the existence of a second CTX-sensitive, but Ca2(+)-independent conductance. A CTX-resistant K+ conductance was also detected. RVD in blood lymphocytes was partially (approximately 75%) blocked by CTX. However, volume regulation was not accompanied by detectable changes in [Ca2+]i, nor was it prevented by removal of extracellular Ca2+ and depletion or buffering of intracellular Ca2+. These observations suggest that K+ loss during RVD is mediated by Ca2(+)-independent, CTX-sensitive channels or that Ca2(+)-dependent channels can be activated by cell swelling at normal or subnormal [Ca2+]i. The former interpretation is supported by findings in rat thymic lymphocytes. These cells also displayed a CTX-sensitive Ca2(+)-dependent hyperpolarization. However, CTX did not significantly alter the resting potential, suggesting the absence of functional Ca2(+)-independent, toxin-sensitive channels. Volume regulation in thymic lymphocytes was less efficient than in human blood cells. In contrast to blood lymphocytes, RVD in thymocytes was not affected by CTX. These observations indicate that, though present in lymphocytes, Ca2(+)-activated K+ channels do not play an important role in volume regulation. Instead, RVD seems to be mediated by Ca2(+)-independent K+ channels. We propose that two types of channels, one CTX sensitive and the other CTX insensitive, mediate RVD in human blood lymphocytes, whereas only the latter type is involved in rat thymocytes.  相似文献   

7.
Bovine adrenal zona fasciculata (AZF) cells express a noninactivating K+ current (IAC) that is inhibited by adrenocorticotropic hormone (ACTH) at picomolar concentrations. Inhibition of IAC may be a critical step in depolarization-dependent Ca2+ entry leading to cortisol secretion. In whole-cell patch clamp recordings from AZF cells, we have characterized properties of IAC and the signalling pathway by which ACTH inhibits this current. IAC was identified as a voltage-gated, outwardly rectifying, K(+)-selective current whose inhibition by ACTH required activation of a pertussis toxin-insensitive GTP binding protein. IAC was selectively inhibited by the cAMP analogue 8-(4- chlorophenylthio)-adenosine 3':5'-cyclic monophosphate (8-pcpt-cAMP) with an IC50 of 160 microM. The adenylate cyclase activator forskolin (2.5 microM) also reduced IAC by 92 +/- 4.7%. Inhibition of IAC by ACTH, 8-pcpt-cAMP and forskolin was not prevented by the cAMP-dependent protein kinase inhibitors H-89 (5 microM), cAMP-dependent protein kinase inhibitor peptide (PKI[5-24]) (2 microM), (Rp)-cAMPS (500 microM), or by the nonspecific protein kinase inhibitor staurosporine (100 nM) applied externally or intracellularly through the patch pipette. At the same concentrations, these kinase inhibitors abolished 8-pcpt-cAMP-stimulated A-kinase activity in AZF cell extracts. In intact AZF cells, 8-pcpt-cAMP activated A-kinase with an EC50 of 77 nM, a concentration 2,000-fold lower than that inhibiting IAC half maximally. The active catalytic subunit of A-kinase applied intracellularly through the recording pipette failed to alter functional expression of IAC. The inhibition of IAC by ACTH and 8-pcpt- cAMP was eliminated by substituting the nonhydrolyzable ATP analogue AMP-PNP for ATP in the pipette solution. Penfluridol, an antagonist of T-type Ca2+ channels inhibited 8-pcpt-cAMP-induced cortisol secretion with an IC50 of 0.33 microM, a concentration that effectively blocks Ca2+ channel in these cells. These results demonstrate that IAC is a K(+)-selective current whose gating is controlled by an unusual combination of metabolic factors and membrane voltage. IAC may be the first example of an ionic current that is inhibited by cAMP through an A-kinase-independent mechanism. The A-kinase-independent inhibition of IAC by ACTH and cAMP through a mechanism requiring ATP hydrolysis appears to be a unique form of channel modulation. These findings suggest a model for cortisol secretion wherein cAMP combines with two separate effectors to activate parallel steroidogenic signalling pathways. These include the traditional A-kinase-dependent signalling cascade and a novel pathway wherein cAMP binding to IAC K+ channels leads to membrane depolarization and Ca2+ entry. The simultaneous activation of A-kinase- and Ca(2+)-dependent pathways produces the full steroidogenic response.  相似文献   

8.
Small- and intermediate-conductance Ca(2+)-activated K(+) channels (SK3/Kcnn3 and IK1/Kcnn4) are expressed in vascular endothelium. Their activities play important roles in regulating vascular tone through their modulation of intracellular concentration ([Ca(2+)](i)) required for the production of endothelium-derived vasoactive agents. Activation of endothelial IK1 or SK3 channels hyperpolarizes endothelial cell membrane potential, increases Ca(2+) influx, and leads to the release of vasoactive factors, thereby impacting blood pressure. To examine the distinct roles of IK1 and SK3 channels, we used electrophysiological recordings to investigate IK1 and SK3 channel trafficking in acutely dissociated endothelial cells from mouse aorta. The results show that SK3 channels undergo Ca(2+)-dependent cycling between the plasma membrane and intracellular organelles; disrupting Ca(2+)-dependent endothelial caveolae cycling abolishes SK3 channel trafficking. Moreover, transmitter-induced changes in SK3 channel activity and surface expression modulate endothelial membrane potential. In contrast, IK1 channels do not undergo rapid trafficking and their activity remains unchanged when either exo- or endocytosis is block. Thus modulation of SK3 surface expression may play an important role in regulating endothelial membrane potential in a Ca(2+)-dependent manner.  相似文献   

9.
Low-conductance states of K+ channels in adult mouse skeletal muscle   总被引:1,自引:0,他引:1  
Single-channel currents were recorded from Ca2+-activated or ATP-sensitive K+ channels in inside-out membrane patches excised from isolated mouse toe muscles. In addition to the closed and fully open configurations, both types of channels may exhibit several intermediate low-conductance states which are clustered near multiples of elementary conductance units. The units are 1/8 or 1/6 of the channel conductance for Ca2+-activated channels and 1/4 or 1/3 for ATP-sensitive channels. Normally, low-conductance states are rare, but they occur more frequently directly after patch excision. An increased probability of low-conductance states of ATP-sensitive K+ channels was also observed in the presence and during washout of the internal channel blocker adenine. The results suggest that Ca2+-activated and ATP-sensitive K+ channels are composed of several membrane pores with strong positive cooperativity among the elementary conductance units.  相似文献   

10.
Bradykinin-induced K+ currents, membrane hyperpolarization, as well as rises in cytoplasmic Ca2+ and cGMP levels were studied in endothelial cells cultured from pig aorta. Exposure of endothelial cells to 1 microM bradykinin induced a whole-cell K+ current and activated a small-conductance (approximately 9 pS) K+ channel in on-cell patches. This K+ channel lacked voltage sensitivity, was activated by increasing the Ca2+ concentration at the cytoplasmic face of inside-out patches and blocked by extracellular tetrabutylammonium (TBA). Bradykinin concomitantly increased membrane potential and cytoplasmic Ca2+ of endothelial cells. In high (140 mM) extracellular K+ solution, as well as in the presence of the K(+)-channel blocker TBA (10 mM), bradykinin-induced membrane hyperpolarization was abolished and increases in cytoplasmic Ca2+ were reduced to a slight transient response. Bradykinin-induced rises in intracellular cGMP levels which reflect Ca(2+)-dependent formation of EDRF(NO) were clearly attenuated in the presence of TBA (10 mM). Our results suggest that bradykinin hyperpolarizes pig aortic endothelial cells by activation of small-conductance Ca(2+)-activated K+ channels. Opening of these K+ channels results in membrane hyperpolarization which promotes Ca2+ entry, and consequently, NO synthesis.  相似文献   

11.
The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells.  相似文献   

12.
Undifferentiated PC12 cell produce high levels of apamin receptors (measured with 125I-apamin) after 7 days in culture. These levels are at least 50 times higher than those found in other cellular types which are also known to have apamin receptors and apamin-sensitive Ca2+-activated K+ channels in their membranes. Treatment of undifferentiated PC12 cells with nerve growth factor maintains these cells in a state having a low level (10 times less after 7 days of culture) of apamin receptors. Ca2+ injection into PC12 cells with the calcium ionophore A23187 has been used to monitor the activity of the Ca2+-activated K+ channel following 86Rb+ efflux. A large component of this Ca2+-activated 86Rb+ efflux is inhibited by apamin. Half-maximum inhibition by apamin of both 86Rb+ efflux and 125I-apamin binding was observed at 240 pM apamin. Another component of 86Rb+ efflux is due to another type of Ca2+-activated K+ channel which is resistant to apamin and sensitive to tetraethylammonium. The Ca2+ channel activator Bay K8644 also triggers an apamin-sensitive Ca2+-dependent 86Rb+ efflux. Bay K8644 has been used to analyze the internal Ca2+ concentration dependence of the apamin-sensitive channel activity. Under normal conditions, the internal Ca2+ concentration is 109 +/- 17 nM, and the apamin-sensitive channel is not activated. The channel is fully activated at an internal Ca2+ concentration of 320 +/- 20 nM.  相似文献   

13.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In this study, single-channel recordings of high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)-blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed-blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening.  相似文献   

15.
Jin M  Berrout J  Chen L  O'Neil RG 《Cell calcium》2012,51(2):131-139
The mouse cortical collecting duct (CCD) M-1 cells were grown to confluency on coverslips to assess the interaction between TRPV4 and Ca(2+)-activated K(+) channels. Immunocytochemistry demonstrated strong expression of TRPV4, along with the CCD marker, aquaporin-2, and the Ca(2+)-activated K(+) channels, the small conductance SK3 (K(Ca)2.3) channel and large conductance BKα channel (K(Ca)1.1). TRPV4 overexpression studies demonstrated little physical dependency of the K(+) channels on TRPV4. However, activation of TRPV4 by hypotonic swelling (or GSK1016790A, a selective agonist) or inhibition by the selective antagonist, HC-067047, demonstrated a strong dependency of SK3 and BK-α activation on TRPV4-mediated Ca(2+) influx. Selective inhibition of BK-α channel (Iberiotoxin) or SK3 channel (apamin), thereby depolarizing the cells, further revealed a significant dependency of TRPV4-mediated Ca(2+) influx on activation of both K(+) channels. It is concluded that a synergistic cross-talk exists between the TRPV4 channel and SK3 and BK-α channels to provide a tight functional regulation between the channel groups. This cross-talk may be progressive in nature where the initial TRPV4-mediated Ca(2+) influx would first activate the highly Ca(2+)-sensitive SK3 channel which, in turn, would lead to enhanced Ca(2+) influx and activation of the less Ca(2+)-sensitive BK channel.  相似文献   

16.
17.
18.
Large conductance, voltage- and Ca2+-activated K+ (BK(Ca)) channels regulate blood vessel tone, synaptic transmission, and hearing owing to dual activation by membrane depolarization and intracellular Ca2+. Similar to an archeon Ca2+-activated K+ channel, MthK, each of four alpha subunits of BK(Ca) may contain two cytosolic RCK domains and eight of which may form a gating ring. The structure of the MthK channel suggests that the RCK domains reorient with one another upon Ca2+ binding to change the gating ring conformation and open the activation gate. Here we report that the conformational changes of the NH2 terminus of RCK1 (AC region) modulate BK(Ca) gating. Such modulation depends on Ca2+ occupancy and activation states, but is not directly related to the Ca2+ binding sites. These results demonstrate that AC region is important in the allosteric coupling between Ca2+ binding and channel opening. Thus, the conformational changes of the AC region within each RCK domain is likely to be an important step in addition to the reorientation of RCK domains leading to the opening of the BK(Ca) activation gate. Our observations are consistent with a mechanism for Ca2+-dependent activation of BK(Ca) channels such that the AC region inhibits channel activation when the channel is at the closed state in the absence of Ca2+; Ca2+ binding and depolarization relieve this inhibition.  相似文献   

19.
20.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号