首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary When treated with various calcium-active agents, the volume changes in the tannin vacuoles of the abaxial (lower) motor cells in the sensitiveMimosa pudica L. correspond to the movement of the primary pulvinus. The calcium pump inhibitors, sodium metavanadate and erythrosin B, significantly inhibited the rate of recovery in both the in vivo and in vitro examinations, while the calcium channel blocker, verapamil, inhibited the closing response. Bay-K 8644 enhanced the in vivo effect and induced the in vitro effect, therefore appearing to be an agonist of the voltage regulated calcium channels in the tannin vacuoles. These observations support the hypothesis that calcium channels in the tannin vacuole membrane underly the thigmonastic response and pumps in the tannin vacuole membrane are involved in the mechanisms underlying recovery.Abbreviations MP mechanical perturbation - Na Vanadate sodium metavanadate  相似文献   

2.
Mechanical perturbations, in the form of either rubbing or wounding, cause ethylene evolution from bean internodes ( Phaseolus vulgaris L. cv. Cherokee Wax). This evolution begins 45 to 60 min after perturbation or wounding and peaks about 2 h later. Maximal thigmomorphogenesis occurs if internodes are perturbed when they are 10 mm or less in length. Maximal ethylene evolution, however, occurs in longer internodes. When one internode is perturbed, ethylene evolution is not observed from other internodes even though they respond thigmomorphogenetically by exhibiting decreased elongation. Ethylene evolution is apparently a result of increased 1-amino-cyclopropane-1-carboxylic acid (ACC) production after perturbation. Inhibitors of ACC and ethylene synthesis block increased radial growth but not reduced elongation. Ethylene may therefore be only one of several factors causing thigmomorphogenesis.  相似文献   

3.
This study was undertaken to assess the role of calcium channels in the contractile response induced by substance P in the isolated rat iris. Substance P produced graded and sustained contraction in the rat iris. Pre-incubation of preparations with thapsigargin (1 μM), verapamil (1 μM), isradipine (1 μM) or with ω-conotoxin MCIIA (0.1 μM) did not significantly inhibit substance P-mediated contraction in the isolated rat iris. However, pre-incubation of the preparations with nicardipine (1 μM) or ruthenium red (1 mM) caused parallel displacement to the right of the substance P concentration–response curve without affecting its maximal response. In contrast, amiloride (1 μM), markedly inhibited substance P-mediated contraction (73±5%), while econazole (1 mM) also significantly inhibited (44±11%) substance P-mediated contraction in the isolated rat iris. Collectively, these results suggest that substance P-mediated contractile response in the isolated rat iris depends largely on the influx of external Ca2+, by a mechanism which might involve the T-type calcium channels.  相似文献   

4.
Summary Externally applied membrane permeable cAMP derivatives and the injection of cAMP induce oocyte maturation in several species of hydrozoans. This technique for inducing oocyte maturation has been used to study ion permeability changes, maturation promoting factor activity and surface tension changes during maturation. Oocyte membrane potential remains constant during maturation. Cyclic AMP induced maturation proceeds in the absence of external Ca2+, K, Mg2+ or Na+. Cytoplasm from maturing oocytes that induces oocyte maturation when it is injected into untreated oocytes is produced during cAMP induced maturation. Surface tension, as measured by the application of a standardized force that mechanically deforms individual oocytes, declines during the first part of maturation. This is followed by a sharp rise and fall of surface tension at first and second polar body formation that accompanies a slow rise in the resistance of oocytes to deformation during the last part of maturation. The production of maturation promoting factor activity and some of the changes in surface tension during maturation can occur in the absence of germinal vesicle material. Two early developmental events that follow oocyte maturation are the production of sperm chemoattractant and calcium channel function. Neither of these events occurs in eggs that have undergone maturation in the absence of germinal vesicle material. The addition of germinal vesicle contents from oocytes to eggs that have undergone maturation in the absence of germinal vesicle material initiates calcium channel function. This experiment indicates that the germinal vesicle contains factors that are necessary for post-maturation developmental events.  相似文献   

5.
It is assumed that dark channels determine a permanent dark conductance of the arthropod visual cell membrane. The light stimulus causes a transient opening of light channels. The ion selectivity of dark channels and light channels is roughly described. Factors influencing the activation of light channels, as membrane energy metabolism, membrane potential and adjusted calcium ion concentration are specified. The mechanism of the action of calcium ions on the conductance of the visual cell membrane is discussed.These considerations are mainly concerned with photoreceptor cells of Limulus, Astacus and Balanus Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976  相似文献   

6.
J. Gaillochet 《Planta》1981,151(6):544-548
LiCl inhibits the nyctinastic closure of folioles of excised leaves and enhances their opening, if there are 3 h before the light is switched off or on; the minimal concentration for significant effects on closure is 3·10-4 M, and on opening 3·10-3. The use of chlorides of other cations and other Li salts showed specificity of the lithium for the closure movement, the effect being reversed by KCl and NaCl. For the opening movement the Li effect is less specific. These results are compared to those obtained in other phenomena.  相似文献   

7.
Insects detect volatile chemosignals with olfactory sensory neurons (OSNs) that express olfactory receptors. Among them, the most sensitive receptors are the odorant receptors (ORs), which form cation channels passing also Ca2+. Here, we investigate if and how odor-induced Ca2+ signals in Drosophila melanogaster OSNs are controlled by intracellular Ca2+ stores, especially by mitochondria. Using an open antenna preparation that allows observation and pharmacological manipulation of OSNs we performed Ca2+ imaging to determine the role of Ca2+ influx and efflux pathways in OSN mitochondria. The results indicate that mitochondria participate in shaping the OR responses. The major players of this modulation are the mitochondrial Ca2+ uniporter and the mitochondrial permeability transition pore. Intriguingly, OR-induced Ca2+ signals were only mildly affected by modulating the Ca2+ management of the endoplasmic reticulum.  相似文献   

8.
The present study demonstrates that desacetyllevonantradol, a synthetic cannabinoid analog, reduces cyclic AMP levels in rat striatal slices stimulated with vasoactive intestinal peptide or SKF 38393, a D1-dopamine agonist. Desacetyllevonantradol and the D2 agonist LY 171555 both inhibited D1-stimulated cyclic AMP accumulation in the striatum. Spiperone, a specific D2-dopamine antagonist, fully reversed the inhibitory effect of LY 171555 but not that of desacetyllevonantradol, indicating that this cannabinoid response is not occurring through a D2-dopaminergic mechanism. Morphine also inhibited cyclic AMP accumulation in striatal slices stimulated with either SKF 38393 or vasoactive intestinal peptide. Naloxone, an opioid antagonist, fully reversed the effect of morphine but not that of desacetyllevonantradol, indicating that cannabinoid drugs are not acting via a mechanism involving opioid receptors. The response to maximally effective concentrations of desacetyllevonantradol was not additive to that of maximally effective concentrations of either morphine or LY 171555, suggesting that dopaminergic, opioid, and cannabinoid receptors may be present on the same populations of cells.  相似文献   

9.
Summary Voltage-dependent K channels could be identified in on-cell and excised patch-clamp records on membranes of isolated plant cell vacuoles. The current through a membrane patch is dominated by a channel population with a conductance of about 121 pS in symmetrical 250mm KCl solution. The single channel adopts at least two conducting levels the 121-pS state being most frequently observed. The channel shows outward rectification, representing a cation flux into the vacuoles. The rectification appears to be caused by a vanishing open probability and a short channel lifetime at hyperpolarizing voltages. A selectivity ratio of potassium over sodium of about 6 was derived as an estimate. Occasionally, an additional population of K channels with a single-channel conductance of approximately 18 pS is observed. This channel type exhibits outward rectification as well.  相似文献   

10.
Migration of differentiated cells to a capillary containing cyclic AMP was enhanced in the presence of 1 mM CaCl2 and was virtually absent in the presence of 1 mM EGTA. Furthermore, the cells contracted and extended pseudopods to a capillary filled with the calcium ionophore A 23187. At short distances, migration to the tip of the capillary was observed. The ionophore also induced transient decreases of the optical density of suspended cells indicating changes of cell shape. These findings support the hypothesis that cyclic AMP-binding to cell surface receptors causes a local influx of calcium ions. These in turn lead to an increase of the cytosolic calcium concentration and subsequently to an activation of cell migration. Perturbing pulses of the ionophore induced permanent phase shifts of free-running light scattering oscillations. This result indicates that cytosolic calcium is an intrinsic component of the oscillatory system.Based on material presented at the Symposium Intercellular Communication, Stuttgart, September 16–17, 1982  相似文献   

11.
N-Methyl-D-aspartate (NMDA) increases cyclic GMP levels in immature rat cerebellar slices incubated in magnesium-containing Krebs buffer in vitro. This effect is blocked by 2-amino-5-phosphonovalerate and by D-alpha-aminoadipate, but not by glutamic acid diethyl ester or gamma-D-glutamylaminomethylsulfonic acid, indicating specific involvement of the NMDA receptor. The response produced by NMDA is abolished by removal of calcium from the medium, proportional to the concentration of extracellular calcium, and blocked by a number of inorganic (Ni2+, Co2+, Cd2+, La3+, Mn2+) calcium antagonists. The responses to NMDA are not blocked by barium or strontium and persist when these ions are substituted for calcium in the incubation medium. The effects of NMDA are blocked by, but are not particularly sensitive to, the organic voltage-dependent calcium channel antagonists. Nifedipine (10 microM) produces partial inhibition of the effects of NMDA, which are also antagonized by high (greater than 200 microM) concentrations of diltiazem and verapamil. The effects of NMDA are tetrodotoxin insensitive but are abolished by omission of sodium from the medium and inhibited by a tetrodotoxin-insensitive sodium channel blocker, Zn2+. The results suggest that calcium channel opening is a consequence of NMDA receptor activation in this model. However, the sodium dependence of the response argues against the use of receptor-operated calcium channels, whereas the weak activity of the organic voltage-sensitive calcium channel antagonists argues either against the use of voltage-dependent calcium channels, or that those implicated in the effects of NMDA are insensitive to these agents.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present study was initiated to gain some information about the tissue distribution of transient receptor potential proteins of C-type (TRPC), a family of voltage-independent cation channels, at the beginning of neurogenesis in the telencephalon of embryonic mice. The mRNAs of all known TRPCs (TRPC1–TRPC7) could be found in the cortex at E13. TRPC1, TRPC3 and TRPC5 were the main isoforms, whereas the mRNAs for TRPC2, TRPC4, TRPC6 and TRPC7 were less abundant. The distribution throughout the cortical wall of TRPC1, TRPC3 and TRPC6 was studied by means of immuno-histochemistry. The data collected pointed to a heterogeneous expression of the channels. Three groups were identified. The first one comprises TRPC1, specifically found in the preplate but only in some post-mitotic neurons. It was mainly observed in a subset of cells distinct from the Cajal-Retzius cells. The second group is composed of TRPC3. It was found in non-neuronal cells and also in dividing (5-bromo-2′-deoxyuridine-positive) cells, indicating that TRPC3 is present in precursor cells. The third group contains TRPC6 detected in neuronal and in dividing non-neuronal cells. Double immunostaining experiments showed that TRPC3-positive cells also express TRPC6. Collectively, this report highlights a specific TRPC expression pattern in the immature cortical wall. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. S. Boisseau and C. Kunert-Keil have contributed equally to this work.  相似文献   

13.
Thonat C  Boyer N  Penel C  Courduroux JC  Gaspar T 《Protoplasma》1993,176(3-4):133-137
Summary The distribution of membrane-bound calium, activated calmodulin, and callose synthesis was visualized inBryonia dioica internodes before and after mechanical stimulus, using fluorescent probes, respectively, chlorotetracycline, fluphenazine, and aniline blue. Bright chlorotetracycline fluorescence remains localized in the plasma membrane of control cells, 30 s after stimulation calcium left the plasmalemma. A delocalization of activated calmodulin was observed after wounding and deposition of callose, which could not be detected before, appeared in the same times in most cells. The callose formation and the decrease in membrane-associated calcium suggest a rapid influx of calcium in the cytosol and an intervention of this ion in the cascade of the early events underlyingBryonia dioica thigmomorphogenesis.Abbreviation CTC chlorotetracycline  相似文献   

14.
Action of serotonin (5-HT) on single Ca(2+) channel activity was studied in identified neurons of snail Helix pomatia. Only one type of Ca(2+) channels of 5 pS unitary conductance was determined under patch-clamp cell-attached mode. Kinetic analysis have shown a monotonically declining distribution of channel open times (OT) with mean time constant of 0.2 ms. The distribution of channel closed times (CT) could be fitted by double-exponential curve with time constants 1 and 12 ms. We established that 5-HT acts on Ca(2+) channel activity indirectly via cytoplasm. 5-HT prolonged the OT (up to 0.3 ms) and shortened the CT proportionally for both constants to 0.4 and 6 ms correspondingly. A conclusion is made that enhancement of Ca(2+) macro-current by 5-HT is determined by kinetic changes, increase of the number of active channels, and increase of the probability of OT. At the same time the transmitter did not affect the unitary channel conductance.  相似文献   

15.
16.
In intracellular calcium signaling, calcium buffers has been recognized for their role in reshaping and localizing the calcium concentration profile in the vicinity of the channel, as well as reducing the effective diffusion of free calcium. In the presence of an excess of endogenous or exogenous buffers, linearization of the reaction-diffusion system describing the calcium-buffer dynamics has been instrumental in understanding the extent of the microdomain formation and in quantifying the apparent diffusion of the free calcium. In these linearized models, the conclusions are usually drawn from the steady-state solutions upon the opening of the channel. In this work, using the joint Laplace-Fourier method, we give an explicit integral transient solution, as well as, the long-time asymptotic behavior of the linearized calcium-buffer dynamics. The results confirm and emphasize the long stated intuitions on the diffusive character of the calcium-buffer dynamics. Numerical validations of our analytical results will be discussed.  相似文献   

17.
Incubation of bovine adrenal chromaffin cells in high K+ (38 mM) during 24-48 h enhanced 2.5 to five times the expression of SNAP-25 protein and mRNA, respectively. This increase was reduced 86% by furnidipine (an L-type Ca2+ channel blocker) but was unaffected by either omega-conotoxin GVIA (an N-type Ca2+ channel blocker) or -agatoxin IVA (a P/Q-type Ca2+ channel blocker). Combined blockade of N and P/Q channels with omega-conotoxin MVIIC did, however, block by 76% the protein expression. The inhibitory effects of fumidipine were partially reversed when the external Ca2+ concentration was raised from 1.6 to 5 mM. These findings, together with the fact that nicotinic receptor activation or Ca2+ release from internal stores also enhanced SNAP-25 protein expression, suggest that an increment of cytosolic Ca2+ concentration ([Ca2+]), rather than its source or Ca2+ entry pathway, is the critical signal to induce the protein expression. The greater coupling between L-type Ca2+ channels and protein expression might be due to two facts: (a) L channels contributed 50% to the global [Ca2+]i rise induced by 38 mM K+ in indo-1-loaded chromaffin cells and (b) L channels undergo less inactivation than N or P/Q channels on sustained stimulation of these cells.  相似文献   

18.
Calcium-activated chloride channels (CaCCs) are crucial regulators of vascular tone by promoting a depolarizing influence on the resting membrane potential of vascular smooth muscle cells. However, the lack of a special blocker of CaCCs has limited the investigation of its functions for long time. Here, we report that CB is a novel potential blocker of I(Cl(Ca)) in rat pulmonary artery smooth muscle cells (PASMC). Cerebrosides (CB) were isolated from Baifuzi which is dried root tuber of the herb Typhonium giganteum Engl used for treatment of stroke in traditional medicine. Using the voltage-clamp technique, sustained Ca(2+)-activated Cl(-) current (I(Cl(Ca))) was evoked by a K(+)-free pipette solution containing 500nM Ca(2+) which exhibited typical outwardly rectifying and voltage-/time-dependence characterization. Data showed that CB played a distinct inhibitory role in modulating the CaCCs. Moreover, we investigated the kinetic effect of CB on I(Cl(Ca)) and found that it could slow the activation dynamics of the outward current, accelerate the decay of the inward tail current and change the time-dependence characterization. We conclude that CB is a novel potent blocker of CaCCs. The interaction between CB and CaCCs is discussed.  相似文献   

19.
Structural development of grain tissues of maternal origin in normal and seg1 barley (Hordeum vulgare L. cv. Betzes) was examined using light and electron microscopy. Chalaza and seedcoat cells of normal grains developed prominent tannin vacuoles which persisted throughout the grain-filling period. Tannins were present in the same tissues of seg1, but no large central vacuoles developed. Instead, the chalaza and nucellar projection degenerated and were crushed, presumably terminating sugar flow and causing formation of shrunken grains (35–55% normal dry weight). Tannins were localized using various histochemical stains. Extracts of chalaza and adjacent tissues contained proanthocyanidins which yielded delphinidin and cyanidin upon hydrolysis in boiling HCl. We suggest that the basis of the seg1 phenotype may be abnormal compartmentation of tannins causing precipitation of cytoplasmic proteins and early death of chalazal cells.Abbreviations FAA Formalin-acetic acid-ethanol - PAS periodic acid Schiffs reagent  相似文献   

20.
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traff ic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a musclespecif ic protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号