首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new enzyme-mediated synthesis of 2-vinylinosine, a compound with broad-spectrum RNA antiviral activity, is described. In order to understand the mechanism of action of this compound, we synthesized its monophosphate and investigated the behavior of that compound toward the enzyme, inosine monophosphate dehydrogenase (IMPDH), a key enzyme involved in the biosynthesis of nucleotides. 2-Vinylinosine monophosphate is a potent inhibitor of IMPDH with a K(i) of 3.98 microM (k(inact)=2.94 x 10(-2) s(-1)). The antiviral activity of 2-vinylinosine may be explained by its cellular conversion to the monophosphate through the sequential action of PNP and HGPRT and subsequent inhibition of IMPDH by the cellularly produced 2-vinylinosine 5'-monophosphate.  相似文献   

2.
Screening of our in-house compound collection led to the discovery of 5-bromo-6-amino-2-isoquinoline 1 as a weak inhibitor of IMPDH. Subsequent optimization of 1 afforded a series of novel 2-isoquinolinoaminooxazole-based inhibitors, represented by 17, with single-digit nanomolar potency against the enzyme.  相似文献   

3.
There are no specific approved drugs or vaccines for the treatment or prevention of infectious dengue virus and there are very few compounds known that inhibit the replication of this virus. This letter describes the concise synthesis of two uracil-based multifunctional compounds. One of these compounds (1) has strong activity against dengue virus. It also exhibits low activity against a few other RNA viruses, but is highly active against yellow fever virus, a related flavivirus. It is likely that the mechanism of action of the antiviral activity of this compound is through its inhibition of the enzyme, inosine monophosphate dehydrogenase (IMPDH). Molecular modeling studies reveal that the compound can have specific hydrogen bonding interactions with a number of amino acids in the active site of IMPDH, a stacking interaction with the bound natural substrate, IMP, and the ability to interfere with the binding of NAD+ with IMPDH, prior to the hydration step.  相似文献   

4.
Inosine monophosphate dehydrogenases (IMPDHs) are the committed step in de novo guanine nucleotide biosynthesis. There are two separate, but very closely related IMPDH isoenzymes, termed type I and type II. IMPDHs are widely believed to be major targets for cancer and transplantation therapy. Mycophenolic acid (MPA) is a potent inhibitor of IMPDHs. Previously, we found that MPA acted as a latent agonist of this nuclear hormone receptor in U2OS cells, and 6'-hydroxamic acid derivatives of MPA inhibited tubulin-specific histone deacetylase[s] (HDAC[s]) in HeLa cells. Although MPA is a promising lead compound, structure-activity relationships (SARs) for inhibition of IMPDH, and the mechanism action of MPA derivatives have not well been understood. We therefore synthesized, evaluated MPA derivatives as IMPDH inhibitor in vitro and cellular level, and explored their biological function and mechanism in cultured cells. This paper exhibits that (i) functional groups at C-5, C-7, and C-6' positions in MPA are important for inhibitory activity against IMPDH, (ii) it is difficult to improve specificity against IMPDH II by modification of 5-, 7-, and 6'-group, (iii) demethylation of 5-OMe results in increasing hydrophilicity, and lowering cell permeability, (iv) ester bonds of protective groups at C-7 and C-6' positions are hydrolyzed to give MPA in cultures, (v) the effects of a tubulin-specific HDAC[s] inhibitor on proliferation and differentiation are weaker than its inhibitory activity against IMPDH. The present work may provide insight into the development of a new class of drug lead for treating cancer and transplantation.  相似文献   

5.
Several novel 1,2,4-triazole and imidazole L-ascorbic acid (1, 2, 3, 5, 6 and 9) and imino-ascorbic acid (4, 7 and 8) derivatives were prepared and evaluated for their inhibitory activity against hepatitis C virus (HCV) replication and human tumour cell proliferation. Compounds 6 and 9 exerted the most pronounced cytostatic effects in all tumour cell lines tested, and were highly selective for human T-cell acute lymphoblastic leukaemia cells (CEM/0) with IC(50)s of 10 ± 4 and 7.3 ± 0.1 μM, respectively. Unlike compound 9, compound 6 showed no toxicity in human diploid fibroblasts. One of the possible mechanisms of action of compound 6 accounting for observed cytostatic activity towards haematological malignancies might be inhibition of inosine monophosphate dehydrogenase (IMPDH) activity, a key enzyme of de novo purine nucleotide biosynthesis providing the cells with precursors for DNA and RNA synthesis indispensable for cell growth and division, which has emerged as an important target for antileukemic therapy. In addition, this compound proved to be the most potent inhibitor of the hepatitis C virus replication as well. However, observed antiviral effect was most likely associated with the effect that the compound exerted on the host cell rather than with selective effect on the replication of the virus itself. In conclusion, results of this study put forward compound 6 as a potential novel antitumor agent (IMPDH inhibitor) for treating leukaemia. Its significant biological activity and low toxicity in human diploid fibroblasts encourage further development of this compound as a lead.  相似文献   

6.
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo purine biosynthesis and is a postulated key enzyme in nitrogen assimilation in ureide-exporting nodules. A 2016 bp cDNA for IMPDH, designated as IMPDH, was cloned from a soybean nodule cDNA library. IMPDH encodes a polypeptide of 502 amino acids with a predicted molecular weight of 53000 and a pI of 5.54. The deduced IMPDH is 70.5% identical to that in Arabidopsis, with a 100% homology in the putative active-site region. Expressing the cloned cDNA in Escherichia coli mutant strain KLC381 (DeltaguaB) restored IMPDH activity, permitting bacterial growth on minimal medium. Southern blot analysis suggested a single copy of IMPDH gene in the soybean genome. Northern blot analysis showed that the expression of IMPDH gene is apparently nodule-specific.  相似文献   

7.
8.
Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).  相似文献   

9.
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.  相似文献   

10.
3-Hydrogenkwadaphnin (3-HK) is a recently characterized daphnane-type compound isolated from Dendrostellera lessertii with high anti-tumor activity in animal models. Herein, we report on time- and dose-dependent effects of this compound on growth, differentiation, IMPDH inhibition, cell cycle and apoptosis of a panel of human leukemia cell lines (HL-60, K562 and Molt4). The drug decreased the growth of leukemia cells in less than 24 h of treatment. However, longer exposure times and/or higher concentrations were required to promote cell apoptosis. Cell cycle analysis revealed the accumulation of cells in their G1 phase as early as 12 h after drug exposure but sub-G1 population was recorded after 24 h. Occurrence of apoptosis was constantly accompanied by morphological (staining with DNA-binding dyes) and biochemical (DNA fragments) variations among drug-treated cells. Despite these observations, non-activated normal human PBL were insensitive to the drug action. In addition, treatment of PHA-activated PBL, K562, Molt4 and HL-60 cells with a single dose of the drug for 24 h led to the inhibition of IMPDH activity by almost 37, 38, 44 and 50%, respectively. In contrast, no difference in IMPDH activities were seen between normal PBL and the drug treated PBL cells. Restoration of the depleted GTP concentration by exogenous addition of guanosine (25-50 microM) reversed the drug effects on cell growth, DNA fragmentation and apoptosis. Furthermore, the drug effects were potentiated by exogenous addition of hypoxanthine to the drug-treated cells. Reduction of the drug potency on the non-proliferative (retinoic acid treated) HL-60 cells by almost 40%, compared to the proliferative cells, clearly shows type II IMPDH as one of the main targets of the drug. These results suggest that 3-HK may be a powerful candidate for treatment of leukemia.  相似文献   

11.
Inhibition of guanosine triphosphate(GTP)and cytidine triphosphate(CTP)biosynthetic pathways induces cells to assemble rod/ring(RR)structures,also named cytoophidia,which consist of the enzymes cytidine triphosphate synthase(CTPS)and inosine-50-monophosphate dehydrogenase 2(IMPDH2).We aim to explore the interaction of CTPS and IMPDH2 in the generation of RR structures.He La and COS-7 cells were cultured in normal conditions or in the presence of 6-diazo-5-oxo-L-norleucine(DON),ribavirin,or mycophenolic acid(MPA).Over 90%of DON-treated cells presented RR structures.In He La cells,35%of the RR structures were positive for IMPDH2alone,26%were CTPS alone,and 31%were IMPDH2/CTPS mixed,while in COS-7 cells,42%of RR were IMPDH2 alone,41%were CTPS alone,and 10%were IMPDH2/CTPS mixed.Ribavirin and MPA treatments induced only IMPDH2-based RR.Cells were also transfected with an N-terminal hemagglutinin(NHA)-tagged CTPS1 construct.Over 95%of NHA-CTPS1 transfected cells with DON treatment presented IMPDH2-based RR and almost 100%presented CTPS1-based RR;when treated with ribavirin,over 94%of transfected cells presented IMPDH2-based RR and 37%presented CTPS1-based RR,whereas 2%of untreated transfected cells presented IMPDH2-based RR and 28%presented CTPS1-based RR.These results may help in understanding the relationship between CTP and GTP biosynthetic pathways,especially concerning the formation of filamentous RR structures.  相似文献   

12.
IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the Km for NAD (1180 microM) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 A with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione beta-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.  相似文献   

13.
14.
To study the induction of differentiation in human melanoma cells, we treated 12 melanoma cell lines with mycophenolic acid and tiazofurin, inhibitors of IMP dehydrogenase (IMPDH). In all cell lines studied, both agents inhibited cell growth and increased melanin content. However, the degree of growth inhibition did not necessarily correspond to the increase in melanin content. A detailed analysis of the HO and SK-MEL-131 cell lines indicated that mycophenolic acid and tiazofurin caused a time- and dose-dependent increase in the expression of a series of other maturation markers, including formation of dendrite-like structures, tyrosinase activity, and reactivity with the CF21 monoclonal antibody. The growth inhibition and melanogenesis induced by the IMPDH inhibitors was abrogated by the addition of exogenous guanosine. No such effect was observed after treatment of the cells with phorbol 12-myristate 13-acetate or retinoic acid, two other inducers of differentiation in these cells. The mycophenolic acid- and tiazofurin-treated cells also showed an increased level of IMPDH mRNA and protein, perhaps because of compensation for the inhibitor-mediated decrease in IMPDH activity. In contrast, treatment with phorbol 12-myristate 13-acetate or retinoic acid resulted in decreased levels of IMPDH mRNA and protein. The lack of a consistent pattern of IMPDH expression in the cells treated with IMPDH inhibitors and phorbol 12-myristate 13-acetate or retinoic acid suggests that the altered expression of IMPDH is not a general requirement for the induction of cell differentiation in these cells. Our results also suggest that IMPDH inhibitors may provide a useful approach to circumvent the differentiation block in melanoma.  相似文献   

15.
The RP 10 form of autosomal dominant retinitis pigmentosa (adRP) is caused by mutations in the widely expressed protein inosine 5′-monophosphate dehydrogenase type 1 (IMPDH1). These mutations have no effect on the enzymatic activity of IMPDH1, but do perturb the association of IMPDH1 with nucleic acids. Two newly discovered retinal-specific isoforms, IMPDH1(546) and IMPDH1(595), may provide the key to the photoreceptor specificity of disease [S.J. Bowne, Q. Liu, L.S. Sullivan, J. Zhu, C.J. Spellicy, C.B. Rickman, E.A. Pierce, S.P. Daiger, Invest. Ophthalmol. Vis. Sci. 47 (2006) 3754-3765]. Here we express and characterize the normal IMPDH1(546) and IMPDH1(595), together with their adRP-linked variants, D226N. The enzymatic activity of the purified IMPDH1(546), IMPDH1(595) and the D226N variants is indistinguishable from the canonical form. The intracellular distribution of IMPDH1(546) and IMPDH1(595) is also similar to the canonical IMPDH1 and unaffected by the D226N mutation. However, unlike the canonical IMPDH1, the retinal specific isoforms do not bind significant fractions of a random pool of oligonucleotides. This observation indicates that the C-terminal extension unique to the retinal isoforms blocks the nucleic acid binding site of IMPDH1, and thus uniquely regulates protein function within photoreceptors.  相似文献   

16.
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of (32)P-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.  相似文献   

17.
IMP dehydrogenase (IMPDH) catalyzes a critical step in guanine nucleotide biosynthesis. IMPDH also has biological roles that are distinct from its enzymatic function. We report a biotin-linked reagent that selectively labels IMPDH and is released by dithiothreitol. This reagent will be invaluable in elucidating the moonlighting functions of IMPDH.  相似文献   

18.
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.  相似文献   

19.
IMP dehydrogenase (IMPDH) catalyzes the pivotal step in guanine nucleotide biosynthesis. Here we show that both IMPDH type 1 (IMPDH1) and IMPDH type 2 are associated with polyribosomes, suggesting that these housekeeping proteins have an unanticipated role in translation regulation. This interaction is mediated by the subdomain, a region of disputed function that is the site of mutations that cause retinal degeneration. The retinal isoforms of IMPDH1 also associate with polyribosomes. The most common disease-causing mutation, D226N, disrupts the polyribosome association of at least one retinal IMPDH1 isoform. Finally, we find that IMPDH1 is associated with polyribosomes containing rhodopsin mRNA. Because any perturbation of rhodopsin expression can trigger apoptosis in photoreceptor cells, these observations suggest a likely pathological mechanism for IMPDH1-mediated hereditary blindness. We propose that IMPDH coordinates the translation of a set of mRNAs, perhaps by modulating localization or degradation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号