首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transforming protein erbB of avian erythroblastosis virus (AEV) has considerable sequence homology with the epidermal growth factor (EGF) and appears to represent a truncated form of this receptor. The sequence of the erbB gene is furthermore related to that of other viral transforming genes such as src, fps, yes or abl. The transforming proteins of these src-related oncogenes as well as receptors for EGF, platelet-derived growth factor (PDGF), and insulin are associated with tyrosine-specific protein kinases. It has been difficult to demonstrate this activity for the erbB protein. To analyze the erbB gene product, we prepared polyclonal antibodies against a bacterially expressed erbB DNA restriction fragment (BamHI/BamHI). The antiserum is shown to immunoprecipitate the erbB protein from AEV-transformed chicken fibroblasts and also recognizes the EGF receptor protein. Both proteins become phosphorylated in vitro on tyrosine residues upon the addition of [gamma-32P]ATP. The protein kinase activity is low compared to other oncogene-specific kinases. This is not due to kinase blocking by the serum, because erbB carboxyterminal synthetic peptide antibodies give rise to low levels of protein kinase activity as well indicating that this may be a characteristic property of erbB in vitro.  相似文献   

2.
The biosynthesis and posttranslational metabolism of the epidermal growth factor (EGF) receptor were examined in the A431 human epidermoid carcinoma cell line. Polyclonal antibody against the receptor specifically immunoprecipitated two [35S]methionine-labeled proteins of Mr = 160,000 and 170,000. Pulse chase experiments showed the Mr = 160,000 protein to be a precursor of the Mr = 170,000 protein. Preincubation with tunicamycin resulted in immunoprecipitation of a single band of Mr = 130,000, whereas monensin inhibited maturation to the Mr = 170,000 form. Digestion of the Mr = 160,000 and 170,000 proteins with endoglycosidase H resulted in the appearance of Mr = 130,000 and 165,000 proteins, respectively. Prolonged pulse-chase experiments indicated that the half-life of the receptor is ca. 20 h in the absence of EGF and 5 h in the presence of EGF. Approximately three- to five-fold more phosphate is incorporated into the mature receptor upon addition of EGF, due primarily to increases in levels of phosphotyrosine and phosphoserine. Phosphate was also present on the Mr = 160,000 protein and the Mr = 130,000 protein found in the presence of tunicamycin.  相似文献   

3.
NIH-3T3 cells expressing the human epidermal growth factor (EGF) receptor were used in experiments to determine the fate of the EGF receptor in cells continuously exposed to EGF. EGF receptor was immunoprecipitated from cells labeled for 12 h with [35S] methionine in the absence or presence of 10 nM EGF. As expected, a single Mr = 170,000 polypeptide representing the mature EGF receptor was immune-precipitated from control cells. Surprisingly, immune precipitates from EGF-treated cells contained a prominent Mr = 125,000 receptor species, in addition to the Mr = 170,000 mature receptor. The Mr = 125,000 species was shown to be derived from the Mr = 170,000 form by pulse-chase experiments, in which the Mr = 170,000 receptor chased into the Mr = 125,000 form when EGF was included during the chase and by partial proteolysis. Both proteins became extensively phosphorylated on tyrosine residues in immune precipitate kinase assays. Treatment of immune precipitates with endoglycosidase F changed the apparent molecular weight of the Mr = 170,000 receptor to Mr = 130,000 and of the Mr = 125,000 form to Mr = 105,000, indicating that the appearance of the Mr = 125,000 protein was probably due to proteolysis. Antibody against the carboxyl terminus of the mature EGF receptor recognized the Mr = 125,000 protein, whereas antibody against the amino terminus did not. Incubation of cells with leupeptin prior to and during EGF addition inhibited processing to the Mr = 125,000 species. Methylamine and low temperature also inhibited the EGF-induced processing to the Mr = 125,000 form. These data suggest a possible role for proteolysis of the EGF receptor in receptor function.  相似文献   

4.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

5.
A rapid and simple method was developed for isolating denatured epidermal growth factor (EGF)-receptor suitable for use in preparation of polyclonal antisera. Membranes from A431 cells (which possess unusually high numbers of EGF-receptors) were phosphorylated in vitro with [gamma-32P]ATP and run on preparative sodium dodecyl sulfate (SDS)-polyacrylamide gels. The Mr 170,000 major phosphorylated region was excised from the gels, eluted, and protein chromatographed on SDS-hydroxylapatite. Fractions containing the Mr 170,000 tyrosine-phosphorylated protein were pooled, concentrated, and rerun on preparative SDS gels. The protein eluted from these gels was judged to be highly purified, based on peptide mapping and on comparison of proteins immunoprecipitated by monoclonal antibody against the EGF-receptor with proteins precipitated by polyclonal antibody prepared against the Mr 170,000 protein described here. The polyclonal antiserum recognized native and denatured EGF-receptor from human, rat, and mouse cells and should prove useful in studying EGF-receptor synthesis and function.  相似文献   

6.
A method is presented for the preparation of a "native" epidermal growth factor (EGF) receptor-kinase complex of molecular weight 170,000 from A-431 cells. Although this receptor complex is capable of binding EGF, noncovalently, in quantities similar to the previously isolated 150,000 complex (Cohen, S., Carpenter, G., and King, L., Jr. (1980) J. Biol. Chem. 255, 4834-4842), the 170,000 preparation has 5 to 10 times the intrinsic kinase activity (autophosphorylation). However, the 170,000 kinase activity toward other proteins is lower than that of the 150,000 preparation. Both the 170,000 and 150,000 kinase activities are enhanced by EGF. The 170,000 and 150,000 proteins are also capable of forming covalent linkages to 125I-EGF, and each is precipitated by antisera directed against the 170,000 protein. We suggest the 150,000 protein is a proteolytic degradation product of the 170,000 protein. The EGF-enhanced kinase activity of the 170,000 preparation remains associated with the 125I-EGF-binding activity following EGF affinity chromatography, electrophoresis in nondenaturing gels, or immunoprecipitation with antisera directed against the sodium dodecyl sulfate (SDS) gel-purified 170,000 protein. These results indicate that the receptor, kinase, and substrate domains are linked, possibly covalently.  相似文献   

7.
The biosynthesis of epidermal growth factor (EGF), a 6045 dalton mitogen produced in the mouse submaxillary gland under androgen regulation, was studied using Xenopus oocytes. Microinjection of total, unfractionated gland mRNA together with [35S]cysteine resulted in the production of a secretory polypeptide of approximately 9000 daltons, specifically immunoprecipitable with anti-EGF antibodies. A minor amount of a similarly immunoreactive 9000 dalton secretory polypeptide was produced from the sucrose gradient 9S fraction of gland mRNA. Other, more intensely labeled polypeptides, a cytoplasmic 125 000 dalton and a secretory 110 000 dalton protein were immunoprecipitated from oocytes injected with the greater than 25S mRNA fraction. The biosynthesis of both can hardly be detected in oocytes injected with unfractionated mRNA. All three polypeptides are produced under androgen regulation and share common immunoreactive properties. Northern blot analysis using a 76 nucleotide synthetic EGF cDNA probe revealed hybridization with a single 28S mRNA species. This, and the apparent interrelation between the three polypeptides, suggest that a gland-specific processing protein, encoded by a 9S mRNA, is required to produce the 9000 dalton pro-EGF from the nascent translation product of EGF mRNA.  相似文献   

8.
The cell membrane receptor for epidermal growth factor (EGF) appears to be a glycoprotein of Mr 170,000 and mediates the mitogenic and metabolic responses of cells with EGF receptors (EGF-R). Normal rat kidney (NRK) have about 3 X 10(5) EGF-R per cell. Upon transformation of NRK cells by Kirsten sarcoma virus, the transformed derivative (KNRK) loses the ability to bind 125I-EGF. Membranes from NRK and KNRK cells were included in EGF-dependent phosphorylation reactions to search for evidence of the EGF-R. A phosphorylated protein of Mr 170,000 was detected in both NRK and KNRK membranes. The Mr 170,000 protein was identified to be EGF-R by immunoprecipitation with monoclonal antibody to the receptor. Furthermore, two-dimensional peptide mapping using trypsin and chymotrypsin digestions of the iodinated receptors from both NRK and KNRK cells showed essentially identical patterns. These data indicate that the EGF-R is present in KNRK cells with apparently the same protein structure as the NRK counterpart.  相似文献   

9.
We have studied the synthesis and oligosaccharide processing of the 110,000 dalton form of the epidermal growth factor (EGF) receptor that is secreted into the medium of A-431 cells. Its 90,000 dalton precursor is soluble within the lumen of intracellular membrane vesicles shortly after synthesis, indicating that it lacks a membrane anchor. Analysis of labeled glycopeptides reveals that the glycosylation of the 110,000 dalton, secreted receptor is very similar to that of the 170,000 dalton, plasma membrane receptor. Based on Concanavalin A-Sepharose elution profiles of its glycopeptides, the secreted receptor has both complex and high-mannose N-linked oligosaccharides. Also, like the plasma membrane receptor, the secreted receptor contains N-acetylgalactosamine residues in its complex chains. Not only are major features of oligosaccharide processing of the soluble and membrane-bound forms of the receptor similar, but the kinetics of transport to the cell exterior is the same for each. These data indicate that the glycosylation pattern and kinetics of cellular transport of the EGF receptor are determined by factors other than the sequence of its cytoplasmic and transmembrane domains.  相似文献   

10.
A brush-border membranal proteinase, which specifically clips the catalytic subunit of cAMP-dependent protein kinase, is shown to cleave the receptor for the epidermal growth factor (EGF) (Mr = 170,000) into two fragments of Mr = 140,000 and 30,000. The 140-kDa fragment retains its EGF-binding site and its EGF-dependent protein tyrosine kinase activity on exogenous substrates, but it loses its capacity to undergo self-phosphorylation. It is shown to be distinct from the 150-kDa fragment of the EGF receptor obtained by the Ca2+-activated neutral proteinase. The membranal proteinase strictly recognizes the native structure of the receptor and fails to cleave either the denatured receptor or its 150-kDa degradation product. Thus the membranal proteinase acts as a conformation-recognizing probe for both the protein-tyrosine kinase domain of the EGF receptor and the catalytic subunit of cAMP-dependent protein-Ser/Thr kinase, suggesting that the known sequence homology between these two kinases is also reflected in their conformation. The well defined 140-kDa fragment described here is useful for structure-function studies of the EGF receptor.  相似文献   

11.
The biosynthesis of the EGF receptor was examined in the epidermoid carcinoma cell line A431 and five novel cell lines from human squamous cell carcinomas possessing high numbers of EGF receptors. Newly synthesized EGF receptors were visualized by labeling with [35S]methionine and immunoprecipitation with a monoclonal anti-EGF receptor antibody. In addition, the processing of the EGF receptor and its intracellular transport was analyzed by distinguishing cell surface receptors from intracellular receptors and by treating cells with inhibitors such as tunicamycin, monensin and brefeldin A. These analyses revealed that in all the tumor cell lines the EGF receptor is synthesized as a glycosylated protein of Mr 160,000 which is converted to the receptor of Mr 170,000 through posttranslational glycosylation. The receptors of Mr 160,000 and 170,000 appeared to possess high mannose type oligosaccharide chains because endoglycosidase H treatment reduced their molecular weights by approximately 30,000. A431 was the only tumor cell line studied that secreted the truncated EGF receptor of Mr 110,000. In A431 cells, the truncated EGF receptor was generated from a protein of Mr 60,000 through tunicamycin- and monensin-sensitive glycosylation. A431 cells treated with monensin secreted the truncated receptor as a Mr 95,000 form.  相似文献   

12.
Isolated triads from rabbit skeletal muscle were shown to contain an intrinsic protein kinase which was neither Ca2+/calmodulin-dependent nor cAMP-dependent. The protein substrates phosphorylated by this protein kinase exhibited apparent molecular weights of 300,000, 170,000, 90,000, 80,000, 65,000, 56,000, 52,000, 51,000, 40,000, 25,000, 22,000, and 15,000. Purification of the 1,4-dihydropyridine receptor from phosphorylated triads has demonstrated that the 170,000- and 52,000-Da subunits of the 1,4-dihydropyridine receptor are phosphorylated by this intrinsic protein kinase in isolated triads. Monoclonal antibodies to the 170,000-Da subunit of the dihydropyridine receptor immunoprecipitated the 170,000-Da phosphoprotein from detergent extracts of phosphorylated triads. The mobility of the 170,000-Da phosphoprotein in sodium dodecyl sulfate-polyacrylamide gels was not changed with or without reduction, demonstrating that the 170,000-Da phosphoprotein is not the glycoprotein subunit of the receptor. Our results demonstrate that the 170,000- and 52,000-Da subunits of the dihydropyridine receptor are phosphorylated by an intrinsic protein kinase in isolated triads. In addition, our results also demonstrate that the 175,000-Da glycoprotein subunit of the dihydropyridine receptor is not phosphorylated in isolated triads by the intrinsic protein kinase, cAMP-dependent protein kinase, or endogenous Ca2+/calmodulin-dependent protein kinase.  相似文献   

13.
Epidermal growth factor (EGF), a mitogenic polypeptide hormone, stimulates the phosphorylation of certain endogenous proteins in membrane preparations derived from A431 cells, a human tumor cell line. Membrane vesicles prepared from A431 cells were reacted with 5'-p-fluorosulfonylbenzoyl adenosine (5'-p-FSO2BzAdo). Reaction of the vesicles with 5'-p-FSO2BzAdo results in a time-dependent inhibition of EGF-stimulable protein kinase activity which parallels an increase in incorporation into the vesicles of the 5'-p-sulfonylbenzoyl-[8-14C]adenosine moiety from 5'-p-FSO2Bz[14C]Ado. The primary bands labeled have Mr = 170,000 and 150,000. Labeling of these bands by 5'-p-FSO2Bz[14C]Ado is inhibited by incubation of the membrane vesicles with adenyl-5'-yl imidodiphosphate, an ATP analog. Inactivation of the kinase with N-ethylmaleimide or by heating results in a sharply decreased labeling of the proteins with Mr = 170,000 and 150,000. Proteins of these molecular weights have previously been identified in these cells as the EGF receptor and a degradation product of the receptor. These experiments provide chemical evidence that the EGF receptor and the EGF-stimulable kinase are the same protein.  相似文献   

14.
Subpicomolar concentrations of human platelet-derived transforming growth factor beta (TGF-beta) inhibited growth factor-stimulated DNA synthesis in primary cultures of adult rat hepatocytes. This inhibition was not the result of changes in the size of intracellular pools of 3H-thymidine and was not dependent on the state of confluence of the cells. A 24-hr exposure to TGF-beta either before or after insulin/EGF stimulation was as inhibitory on DNA synthesis between 48 and 72 hr of culture as was TGF-beta present throughout 72 hr of culture. From 12 hr in culture to 24 hr, hepatocyte EGF binding sites dropped from about 230,000 to 85,000 per cell with no significant change in Kd, but with a loss in capacity for EGF-induced receptor down-regulation. Maximally inhibitory concentrations of TGF-beta did not compete with EGF for the EGF receptor, and a 4- to 24-hr exposure to TGF-beta did not alter subsequent EGF binding. Coincubation of hepatocytes with TGF-beta and EGF did not influence the 60% reduction in EGF binding sites produced by EGF alone. In addition, TGF-beta did not prevent EGF-induced autophosphorylation of the 170,000 dalton EGF receptor in membranes from whole liver. Our studies suggest that TGF-beta regulates hepatocyte growth independently of changes in EGF receptor number, ligand affinity, or postbinding autophosphorylation.  相似文献   

15.
Epidermal growth factor (EGF) receptor biosynthesis was examined in an oral squamous cell carcinoma line, NA, which overproduces the receptor to an even greater extent than the widely studied A431 cells. The EGF receptor of NA cells synthesized in the presence of tunicamycin had an apparent molecular weight of 130,000. The nascent protein in untreated cells was cotranslationally glycosylated to Mr 160,000 and further processed to Mr 170,000. The endo-beta-N-acetylglucosaminidase H (Endo H) digestion analysis revealed the presence of high mannose type oligosaccharide on the Mr 170,000 mature receptor. We extended the analysis by correlating the biosynthesis with the acquisition of binding activity. The unglycosylated Mr 130,000 receptor and the Mr 160,000 receptor seen after pulse-labeling had no EGF binding activity, whereas the Mr 160,000 receptor seen after chase-incubation and the Mr 170,000 receptor had binding activity. Thus, not only glycosylation but also some oligosaccharide processing is apparently necessary for the EGF binding. Treatment with processing inhibitors, such as monensin, swainsonine and 1-deoxynojirimycin, affected neither receptor transport to the plasma membrane nor binding activity. Inhibition by 1-deoxynojirimycin is thought to be incomplete since the surface receptor in treated cells had the same molecular weight as that in control cells. An Mr 160,000 receptor without binding activity accumulated in the intracellular fraction in the presence of brefeldin A, an inhibitor of intracellular transport. Thus, the EGF binding activity is thought to be acquired after the brefeldin A-sensitive process but prior to the swainsonine-sensitive mannose removal in NA cells.  相似文献   

16.
Serum amyloid A (SAA) protein is a 12,000 dalton protein that exists in serum under physiologic conditions as an 85,000 dalton complex and under certain conditions, as a 170,000 dalton component. To study the reason for this finding, the behavior of 125I-SAA was studied in the presence of cold SAA and several serum proteins. SAA caused a shift of some of the radioactivity to the region of albumin. Addition of normal human serum or albumin caused a shift of a significant fraction of the radioactivity to a peak eluting slightly ahead of albumin (80.000 daltons). This interaction could be blocked by the addition of cold SAA. No shift was noted when IgG or Bence Jones proteins were added. Thus, it appears that low molecular SAA protein has a tendency to aggregate with itself and to bind to albumin but not to human IgG or Bence Jones proteins.  相似文献   

17.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

18.
Treatment of membrane vesicles from A431 cells, a human epidermoid carcinoma line, with the affinity label 5'-p-fluorosulfonylbenzoyl [8-14C]adenosine (5'-p-FSO2Bz[14C]Ado) results in an inhibition of the epidermal growth factor (EGF)-stimulable protein kinase and in the modification of proteins having the same molecular weight (Mr = 170,000 and 150,000) as the receptor for EGF (Buhrow, S. A., Cohen, S., and Staros, J. V. (1982) J. Biol. Chem. 257, 4019-4022). Modification of the vesicles with 5'-p-FSO2BzAdo inhibits not only the EGF-stimulated phosphorylation of endogenous membrane proteins but also the EGF-stimulated phosphorylation of an exogenous synthetic tyrosine-containing peptide substrate. This indicates that the EGF-stimulable protein kinase is modified by 5'-p-FSO2BzAdo at a site affecting catalytic activity. Membrane vesicles were treated with 5'-p-FSO2Bz-[14C]Ado to affinity label the kinase, then the EGF receptor was purified by affinity chromatography on immobilized EGF. The EGF receptor thus purified contains the 5'-p-SO2Bz[14C]Ado moiety. These data strongly support our hypothesis that the EGF receptor and EGF-stimulable kinase are two parts of the same polypeptide chain.  相似文献   

19.
A D Levinson  A J Levine 《Cell》1977,11(4):871-879
Serum from hamsters bearing group C adenovirus-induced tumors can be divided into two classes: first, a broad spectrum serum that contains antibodies to several early adenovirus proteins, immunoprecipitated from virus-infected cell extracts, with molecular weights of 72,000, 58,000, 44,000 and 17,000 daltons; and second, a narrow spectrum serum that contains antibodies to the 58,000 dalton protein from virus-infected cell extracts. Both types of sera have been used to immunoprecipitate specifically the 58,000 dalton protein from a type 2 adenovirus-transformed hamster cell line and a type 2 adenovirus-SV40 nondefective hybrid (Ad2+ND-1) transformed hamster cell line. In addition, the broad spectrum serum immunoprecipitates or co-precipitates a late adenovirus protein of 120,000 daltons from virus-infected, but not virus-transformed cells.Peptide maps of the 120,000 dalton antigen and the virus hexon structural protein (120,000 daltons) demonstrate that these proteins are closely related. The 72,000 dalton antigen has been shown to be the adenovirus single-strand-specific DNA binding protein. Peptide maps of this 72,000 dalton antigen demonstrate that it contains all the peptides found in the 44,000 dalton antigen. The 72,000 dalton antigen contains two additional peptide fragments not detected in the 44,000 dalton protein, indicating that this 44,000 dalton antigen is a proteolytic breakdown product of the 72,000 dalton protein. The 58,000 dalton adenovirus tumor antigen has a peptide map which is completely distinct from the 120,000, 72,000 and 44,000 dalton proteins. These data demonstrate that the 58,000 dalton antigen is chemically distinct from the 72,000–44,000 dalton early adenovirus proteins.  相似文献   

20.
The EGF receptor cDNA has been transfected into receptor-negative Chinese hamster ovary (CHO) cells. A mutant cell line (CHO 11) was isolated that expresses a receptor of lower molecular weight than the EGF receptor from A431 cells (150,000 daltons compared to 170,000 daltons) and which appeared as a doublet on SDS-PAGE. By digestion of the receptor with endoglycosidase F it was shown that an altered pattern of glycosylation could not account for the smaller size of the protein, although it could explain the appearance of the CHO 11 receptor as a doublet protein. A deletion was located to the transfected cDNA and shown to involve the removal of coding sequences for the most C-terminal 20,000 daltons of the EGF receptor, which contains the three major autophosphorylation sites. Despite the loss of these sites the EGF receptor from CHO 11 cells binds EGF, demonstrates protein tyrosine kinase activity in response to EGF, and transduces a mitogenic signal. The CHO 11 receptor protein is still autophosphorylated on alternative tyrosine residues. We conclude that phosphorylation of the three tyrosines (P1, P2, and P3) in the C-terminal domain of the receptor is not required for signal transduction by the EGF receptor in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号