首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Analysis of potential virulence factors of oral spirochetes focuses on surface and secreted proteins. The Treponema denticola chymotrypsin-like protease (CTLP) is implicated in degradation of host cell molecules and contributes to tissue invasion. The CTLP complex, composed of the 72-kDa PrtP protein and two auxiliary proteins with molecular masses of approximately 40 and 30 kDa, is also involved in localization and oligomerization of the T. denticola major surface protein (Msp). The larger auxiliary protein was reported to be encoded by an open reading frame (ORF2) directly upstream of prtP. The deduced 39-kDa translation product of ORF2 contains a sequence matching the N-terminal sequence determined from one of the CTLP complex proteins. No proteins with significant homology are known, nor was information available on the third protein of the complex. DNA sequence analysis showed that ORF2 extended an additional 852 bp upstream of the reported sequence. The complete gene, designated prcA, encodes a predicted N-terminally-acylated polypeptide of approximately 70 kDa. Isogenic mutants with mutations in prtP, prcA, and prcA-prtP all lacked CTLP protease activity. The prcA mutant lacked all three CTLP proteins. The prcA-prtP mutant produced only a C-terminally-truncated 62-kDa PrcA protein. The prtP mutant produced a full-length 70-kDa PrcA. Immunoblot analysis of recombinant PrcA constructs confirmed that PrcA is cleaved to yield the two smaller proteins of the CTLP complex, designated PrcA1 and PrcA2. These data indicate that PrtP is required for cleavage of PrcA and suggest that this cleavage may be required for formation or stability of outer membrane complexes.  相似文献   

2.
The purified chymotrypsin-like protease of Treponema denticola, designated dentilisin or PrtP (DDBJ accession no. D83264), can disrupt cell-cell junctions and impair the barrier function of epithelial monolayers in vitro. Serine protease inhibitors block these effects. Yet, the protease is apparently less significant in perturbing intracellular signaling pathways and cytoskeletal rearrangement in fibroblasts. The purpose of this study was to use a PrtP-deficient mutant of T. denticola to confirm that the cytopathic effects of whole bacteria and its outer membrane on epithelial cell junctions were primarily accounted for by the activity of this protease. The prtP gene of ATCC 35405 was inactivated by insertion of an erythromycin-resistance cassette, yielding mutant K1. In contrast to wildtype ATCC 35405, mutant K1 grew in tight cell aggregates; the cells had a disrupted outer sheath, as determined by electron microscopy. When compared by silver stained SDS-PAGE of sonicated extracts of whole cells, the extract of mutant K1 was missing a band at approximately 90 kDa that was present in the wildtype ATCC 35405 strain. Whole cells and Triton X-100 outer membrane (OM) extracts of K1 and the wildtype strains were compared 1) for SAAPNA degrading activity by a colorimetric assay, 2) for stress fiber disruption in human gingival fibroblasts (HGF) by fluorescence microscopy of TRITC-phalloidin stained cells, and 3) the OM extracts only for perturbation of HEp-2 epithelial monolayers by electrical cell-substrate impedance sensing (ECIS). Mutant K-1 cells and OM had no SAPPNA degrading activity that is characteristic of dentilisin. K1 cells had HGF stress fiber disrupting activity (86 +/- 4.5% of HGFs affected) equivalent to both 35405 wildtype strains (84 +/- 3.9% and 71 +/- 14.1% of HGF, respectively). Yet, mutant K1 OM had diminished stress fiber disrupting activity (12.9 +/- 4.6% of HGF) compared with its parent 35405's OM (94.6 +/- 2.9%). The major cytopathogenic difference between the K1 mutant and wildtype strains was in their OM's effect on epithelial cell junctions. ATCC 35405 OM completely disrupted epithelial resistance in a concentration - dependent manner; mutant K1 OM had negligible effects. These data confirm that inactivation of the prtP gene completely reverses T. denticola's disruption of epithelial junctions, but there are pleiotropic effects of the mutation that may account for its apparently diminished effects on the cytoskeleton of HGF when the cells were challenged with OM extracts.  相似文献   

3.
One of the major proteins secreted by Pseudomonas aeruginosa is a 43-kDa protein, which is cleaved by elastase into smaller fragments, including a 30-kDa and a 23-kDa fragment. The N-terminal 23-kDa fragment was previously suggested as corresponding to a staphylolytic protease and was designated LasD (S. Park and D. R. Galloway, Mol. Microbiol. 16:263-270, 1995). However, the sequence of the gene encoding this 43-kDa protein revealed that the N-terminal half of the protein is homologous to the chitin-binding proteins CHB1 of Streptomyces olivaceoviridis and CBP21 of Serratia marcescens and to the cellulose-binding protein p40 of Streptomyces halstedii. Furthermore, a short C-terminal fragment shows homology to a part of chitinase A of Vibrio harveyi. The full-length 43-kDa protein could bind chitin and was thereby protected against the proteolytic activity of elastase, whereas the degradation products did not bind chitin. The purified 43-kDa chitin-binding protein had no staphylolytic activity, and comparison of the enzymatic activities in the extracellular medium of a wild-type strain and a chitin-binding protein-deficient mutant indicated that the 43-kDa protein supports neither chitinolytic nor staphylolytic activity. We conclude that the 43-kDa protein, which was found to be produced by many clinical isolates of P. aeruginosa, is a chitin-binding protein, and we propose to name it CbpD (chitin-binding protein D).  相似文献   

4.
Lactococcal proteinase maturation protein PrtM is a lipoprotein.   总被引:6,自引:2,他引:4       下载免费PDF全文
The production of enzymatically active proteinase by lactococci requires the joint presence of a proteinase gene, prtP, and a gene encoding a maturation protein, prtM. A 32-kDa protein produced by Escherichia coli upon expression of the prtM gene under the direction of the T7 RNA polymerase promoter was purified and used to obtain PrtM-specific antibodies. With these antibodies, immunogold labeling of lactococcal cells revealed that PrtM was associated with the lactococcal cell envelope. Western blot (immunoblot) analysis of whole lactococcal cells and isolated membrane vesicles indicated that PrtM was a membrane-associated protein. Radiolabeling of Lactococcus lactis with [3H]palmitic acid showed that PrtM was a lipoprotein. Partial secretion of PrtM into the culture medium was observed after Cys-24, the target residue for lipid modification, was replaced by an Ala residue by means of site-directed mutagenesis. This mutation did not affect proteinase activity.  相似文献   

5.
Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, "Treponema vincentii," and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5' hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes.  相似文献   

6.
M M Lle  R Fontana    M Solioz 《Journal of bacteriology》1995,177(20):5912-5917
Muramidase-2 of Enterococcus hirae is a 74-kDa peptidoglycan hydrolase that plays a role in cell wall growth and division. To study its regulation, we isolated a mutant defective in muramidase-2 release under certain growth conditions. This mutant had cell walls which apparently lacked 74-kDa muramidase-2 but which accumulated two proteolytic fragments of 32 and 43 kDa, which exhibited muramidase-2 activity in the membrane fraction. By complementation cloning, we identified a 2.6-kb fragment of the E. hirae chromosome containing a gene cluster coding for proteins of 58 to 137 amino acids. One of these genes (arpU), which encoded a 15.9-kDa protein, was shown to complement the defect of the A9 mutant in trans. We propose that this gene may be involved in the regulation of muramidase-2 export.  相似文献   

7.
The mechanism of entry of vaccinia virus (VV) into cells is still a poorly understood process. A 14-kDa protein (encoded by the A27L gene) in the envelope of intracellular mature virus (IMV) has been implicated in virus-cell attachment, virus-cell fusion, and virus release from cells. We have previously described the structural organization of the VV 14-kDa protein, consisting of a triple-stranded coiled-coil region responsible for oligomer formation and a predicted Leu zipper-like third alpha helix with an important role in the interaction with a 21-kDa membrane protein (encoded by the A17L gene) thought to anchor the 14-kDa protein to the envelope of IMV (M.-I. Vázquez, G. Rivas, D. Cregut, L. Serrano, and M. Esteban, J. Virol. 72:10126-10137, 1998). To identify the functional domains important for virus entry and release, we have generated VV recombinants containing a copy of the A27L gene regulated by the lacI operator-repressor system of Escherichia coli (VVIndA27L) in the thymidine kinase locus and a mutant form of the A27L gene in the hemagglutinin locus but expressed constitutively under the control of an early-late VV promoter. Cells infected with a VV recombinant that expresses a mutant 14-kDa form lacking the first 29 amino acids at the N terminus failed to form extracellular enveloped virus (EEV). Fusion-from-without assays with purified virus confirmed that the fusion process was mediated by the 14-kDa protein and the fusion domain to be contained within amino acids 29 to 43 of the N-terminal region. Competitive inhibition of the infection process with soluble heparin and synthetic peptides and in vitro experiments with purified mutant proteins identified the heparin binding domain within amino acids 21 to 33, suggesting that this domain is involved in virus-cell binding via heparan sulfate. Thus, the N terminus of the 14-kDa protein contains a heparin binding domain, a fusion domain, and a domain responsible for interacting with proteins or lipids in the Golgi stacks for EEV formation and virus spread.  相似文献   

8.
A gene coding for yeast 15-kDa protein, a regulatory factor of mitochondrial F1F0-ATPase, was isolated. The cloned gene was disrupted in vitro and mutant strains that did not contain the 15-kDa protein were constructed by transformation of yeast cells with the disrupted gene. The ATP-synthesizing activity of the mutant mitochondria was the same as that of wild-type cells, suggesting that the 15-kDa protein is not required for mitochondrial oxidative phosphorylation. Collapse of the membrane potential induced ATP-hydrolyzing activity of F1F0-ATPase of the mutant mitochondria but not of normal mitochondria. Activation of the enzyme was also observed during incubation of submitochondrial particles from mutant cells, but not of those from wild-type cells. Thus, it is inferred that the 15-kDa protein supports the action of an intrinsic ATPase inhibitor of the ATP-hydrolyzing activity of the enzyme upon de-energization of mitochondrial membranes.  相似文献   

9.
W M de Vos  P Vos  H de Haard  I Boerrigter 《Gene》1989,85(1):169-176
The Lactococcus lactis subsp. cremoris SK11 plasmid-located prtP gene, encoding a cell-envelope-located proteinase (PrtP) that degrades alpha s1-, beta- and kappa-casein, was identified in a lambda EMBL3 gene library in Escherichia coli using immunological methods. The complete prtP gene could not be cloned in E. coli and L. lactis on high-copy-number plasmid vectors. However, using a low-copy-number vector, the complete prtP gene could be cloned in strains MG1363 and SK1128, proteinase-deficient derivatives of L. lactis subsp. lactis 712 and L. lactis subsp. cremoris SK11, respectively. The proteinase deficiency of these hosts was complemented to wild-type (wt) levels by the cloned SK11 prtP gene. The caseinolytic specificity of the proteinase specified by the cloned prtP gene was identical to that encoded by the wt proteinase plasmid, pSK111. The expression of recombinant plasmids containing 3' and 5' deletions of prtP was analyzed with specific attention directed towards the location of the gene products. In this way the expression signals of prtP were localized and overproduction was obtained in L. lactis subsp. lactis. Furthermore, a region at the C terminus of PrtP was identified which is involved in cell-envelope attachment in lactococci. A deletion derivative of prtP was constructed which specifies a C-terminally truncated proteinase that is well expressed and fully secreted into the medium, and still shows the same capacity to degrade alpha s1-, beta- and kappa-casein.  相似文献   

10.
A protein complex, consisting of a 17-kilodalton (kDa) nuclease and an 18-kDa protein, is believed to be involved in the binding and entry of donor DNA during transformation of Bacillus subtilis (H. Smith, K. Wiersman, S. Bron, and G. Venema, J. Bacteriol. 156:101-108, 1983). In this paper, the nucleotide sequences of the genes encoding both the nuclease and the 18-kDa protein are presented. The genes are encoded by a 904-base-pair PstI-HindIII fragment. The open reading frames encoding both proteins are partly overlapping. A B. subtilis mutant was constructed by insertion of a Cmr marker into the gene encoding the nuclease. This mutant lacked the competence-specific nuclease activity and the 18-kDa protein but retained 5% residual transformation. The total DNA association of the mutant was higher than that of the wild-type cells, and DNA entry was reduced to 30% of the wild-type level. These results suggest that an alternative pathway exists for the internalization of transforming DNA. A mutant, exclusively deficient for the 18-kDa protein, previously suggested to be involved in the binding of transforming DNA, was constructed by insertion of a kanamycin resistance gene into the coding sequence of the gene. Since the mutant showed wild-type DNA-binding activity, the 18-kDa protein is probably not involved in the binding of donor DNA to competent cells. The transforming activity of the mutant was reduced to 25% of the wild-type level, indicating that the 18-kDa protein has a function in the transformation process. In vitro experiments showed that the 18-kDa protein is capable of inhibiting the activity of the competence-specific nuclease. Its possible role in transformation is discussed.  相似文献   

11.
Inactivation of the gene encoding the 11-kDa subunit VIII of yeast ubiquinol:cytochrome c oxidoreductase leads to an inactive complex, which lacks detectable cytochrome b [Maarse, A. C., De Haan, M., Schoppink, P. J., Berden, J. A. and Grivell, L. A. (1988) Eur. J. Biochem. 172, 179-184] and in which the steady-state levels of the Fe-S protein and the 14-kDa subunit VII are severely reduced. When the 11-kDao mutant is transformed with a gene encoding a protein consisting of the 11-kDa protein minus its last 11 amino acids and fused to a 7-amino-acid sequence encoded by a stop oligonucleotide, the complex is assembled normally. Enzyme activity is similar to that of the wild type, as is also the sensitivity of the complex to antimycin and myxothiazol. Transformation of the mutant with a gene encoding a protein consisting of the 11-kDa protein lacking the last 43 amino acids (i.e. almost half the protein) and fused to the same 7-amino-acid sequence as above, gives partial restoration of the complex. The Fe-S protein and the 14-kDa subunit VII still exhibit low steady-state levels, but cytochrome b is present again, albeit at a strongly reduced level. Electron transport activity is also partially restored and correlates with the level of cytochrome b indicating that the turnover number of the complex is similar to that of wild-type complex III. These findings demonstrate the important role played by the 11-kDa protein in the stabilization of cytochrome b. They also imply that at least the C-terminal half of the 11-kDa protein is not part of an ubiquinol-binding site. Moreover, since the deletion has no effect on the sensitivity of the complex to myxothiazol and antimycin, at least this part of the protein is probably not involved in binding of these inhibitors.  相似文献   

12.
The complete nucleotide sequence of a gene located immediately upstream of the Lactococcus lactis subsp. cremoris SK11 prtP gene encoding the cell envelope-attached proteinase was determined. This gene, designated prtM, was found to be transcribed from the same promotor region as was the proteinase gene but in the opposite direction. The prtM gene directed the expression in Escherichia coli of a protein with a size similar to the expected value of 33 kilodaltons, as deduced from the nucleotide sequence data. The derived amino acid sequence of the PrtM protein indicated the presence of a consensus lipoprotein signal sequence at the N terminus, which suggested that PrtM is a lipoprotein. Plasmids containing the prtM gene, the prtP gene, or both were constructed. Expression studies of L. lactis clones containing these plasmids showed that the prtM gene encodes a trans-acting activity involved in the maturation of cell envelope-located and -secreted forms of the SK11 proteinase.  相似文献   

13.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete® and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   

14.
Prolyl-phenylalanine-specific serine protease (dentilisin) is a major extracellular protease produced by Treponema denticola. The gene, prtP, coding for the protease was recently cloned and sequenced (K. Ishihara, T. Miura, H. K. Kuramitsu, and K. Okuda, Infect. Immun. 64:5178–5186, 1996). In order to determine the role of this protease in the physiology and virulence of T. denticola, a dentilisin-deficient mutant, K1, was constructed following electroporation with a prtP-inactivated DNA fragment. No chymotrypsin-like protease activity was detected in the dentilisin-deficient mutant. In addition, the high-molecular-mass oligomeric protein characteristic of the outer sheath of the organism decreased in the mutant. Furthermore, the hydrophobicity of the mutant was decreased, and coaggregation of the mutant with Fusobacterium nucleatum was enhanced compared to that of the wild-type organism. The results obtained with a mouse abscess model system indicated that the virulence of the mutant was attenuated relative to that of the wild-type organism. These results suggest that dentilisin activity plays a major role in the structural organization of the outer sheath of T. denticola. The loss of dentilsin activity and the structural change in the outer sheath affect the pathogenicity of T. denticola.  相似文献   

15.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete(R) and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   

16.
Escherichia coliDNA gyrase B subunit (GyrB) is composed of a 43-kDa N-terminal domain containing an ATP-binding site and a 47-kDa C-terminal domain involved in the interaction with the gyrase A subunit (GyrA). Site-directed mutagenesis was used to substitute, in both the entire GyrB subunit and its 43-kDa N-terminal fragment, the amino acid Y5 by either a serine (Y5S) or a phenylalanine residue (Y5F). Under standard conditions, cells bearing Y5S or Y5F mutant GyrB expression plasmids produced significantly less recombinant proteins than cells transformed with the wild-type plasmid. This dramatic decrease in expression of mutant GyrB proteins was not observed when the corresponding N-terminal 43-kDa mutant plasmids were used. Examination of the plasmid content of the transformed cells after induction showed that the Y5F and Y5S GyrB protein level was correlated with the plasmid copy number. By repressing tightly the promoter activity encoded by these expression vectors during cell growth, it was possible to restore the normal level of the mutant GyrB encoding plasmids in the transformed bacteria. Treatment with chloramphenicol before protein induction enabled large overexpression of the GyrB mutant Y5F and Y5S proteins. In addition, the decrease in plasmid copy number was also observed when the 47-kDa C-terminal fragment of the GyrB subunit was expressed in bacteria grown under standard culture conditions. Analysis of DNA supercoiling and relaxation activities in the presence of GyrA demonstrated that purified Y5-mutant GyrB proteins were deficient for ATP-dependent gyrase activities. Taken together, these results show that Y5F and Y5S mutant GyrB proteins, but not the corresponding 43-kDa N-terminal fragments, competein vivowith the bacterial endogenous GyrB subunit of DNA gyrase, thereby reducing the plasmid copy number in the transformed bacteria by probably acting on the level of negative DNA supercoilingin vivo.This competition could be mediated by the presence of the intact 47-kDa C-terminal domain in the Y5F and Y5S mutant GyrB subunits. This study demonstrates also that the amino acid Y5 is a crucial residue for the expression of the gyrase B activityin vivo.Thus, ourin vivoapproach may also be useful for detecting other important amino acids for DNA gyrase activity, as mutations affecting the ATPase activity or the GyrB/GyrB or GyrB/GyrA protein interactions.  相似文献   

17.
Takamune N  Hamada H  Misumi S  Shoji S 《FEBS letters》2002,523(1-3):138-142
A 33-kDa protein component of the oxygen-evolving complex in photosystem II is essential for photosynthesis, and it has been believed that mutants with deletion of this 33-kDa protein are not found in higher plants. We report here the first isolation of an Arabidopsis thaliana mutant with a defect in one of the genes for the 33-kDa proteins, psbO, and an intact gene (psbO2). This mutant showed considerable growth retardation, suggesting that there is a functional difference between psbO and psbO2.  相似文献   

18.
The plasmid-free strain Lactococcus lactis subsp. cremoris BC101 produced an extracellular proteinase physicochemically similar to the proteinase encoded by the plasmid-linked prtP gene of other lactococcal strains. The absence of detectable plasmids in strain BC101 indicated that the prtP proteinase gene may be chromosomally located. The chromosomal linkage of the prtP proteinase gene in BC101 was confirmed by pulsed-field electrophoresis of chromosomal DNA and hybridization, using as a probe the plasmid-linked prtP gene from L. lactis subsp. cremoris Wg2. The prtM gene necessary for the maturation of the proteinase was also chromosomally located adjacent to prtP in BC101. By using as a hybridization probe the ISS1-like element ISS1W, which is found adjacent to the proteinase genes in both pWV05 and pSK111, specific homology to the chromosomal fragment containing the proteinase gene was found. DNA sequencing of a polymerase chain reaction product of chromosomal DNA upstream from prtM revealed a 123-nucleotide sequence which was 100% identical to the equivalent sequence in the ISS1W-containing plasmid. The terminal inverted repeat (18 nucleotides) of the ISS1W element was found in this sequenced DNA. These findings suggest that the chromosomal proteinase gene is organized in a fashion similar to that of the plasmid-linked proteinase gene.  相似文献   

19.
Hanada K  Hirano H 《Biochemistry》2004,43(38):12105-12112
A 43-kDa soybean protein is a receptor-like protein kinase that is capable of interaction with a 4-kDa hormone-like peptide (leginsulin). The 43-kDa protein consists of alpha and beta subunits; the beta subunit has protein kinase activity that is stimulated by the binding of the 4-kDa peptide. The protein kinase activity is believed to be an early step in a signal transduction cascade, triggered by the peptide. Animal insulin also interacts with the 43-kDa protein and stimulates the protein kinase activity, suggesting that the 4-kDa peptide and insulin bind to the 43-kDa protein with similar mechanisms. To determine the mechanism of interaction between the 4-kDa peptide and 43-kDa protein, we investigated the binding region of the 4-kDa peptide on the 43-kDa protein using surface plasmon resonance (SPR) spectroscopy. We found that the N- (amino acids 1-43) and C-terminal (amino acids 228-251) regions of the alpha subunit of the 43-kDa protein are involved in the binding. The interactions of both insulin and the 4-kDa peptide with the 43-kDa protein were compared using SPR spectroscopy, revealing that insulin binds to the C-terminal regions of the alpha subunit of the 43-kDa protein. These results suggest that the C-terminal region is especially important for the biological function. The N-terminal region is thought to play an important role in stabilizing the complex of the 43-kDa protein and the 4-kDa peptide.  相似文献   

20.
PomA and PomB form a complex that conducts sodium ions and generates the torque for the Na(+)-driven polar flagellar motor of Vibrio alginolyticus. PomA has four transmembrane segments. One periplasmic loop (loop(1-2)) connects segments 1 and 2, and another (loop(3-4)), in which cysteine-scanning mutagenesis had been carried out, connects segments 3 and 4. When PomA with an introduced Cys residue (Cys-PomA) in the C-terminal periplasmic loop (loop(3-4)) was examined without exposure to a reducing reagent, a 43-kDa band was observed, whereas only a 25-kDa band, which corresponds to monomeric PomA, was observed under reducing conditions. The intensity of the 43-kDa band was enhanced in most mutants by the oxidizing reagent CuCl(2). The 43-kDa band was strongest in the P172C mutant. The motility of the P172C mutant was severely reduced, and P172C showed a dominant-negative effect, whereas substitution of Pro with Ala, Ile, or Ser at this position did not affect motility. In the presence of DTT, the ability to swim was partially restored, and the amount of 43-kDa protein was reduced. These results suggest that the disulfide cross-link disturbs the function of PomA. When the mutated Cys residue was modified with N-ethylmaleimide, only the 25-kDa PomA band was labeled, demonstrating that the 43-kDa form is a cross-linked homodimer and suggesting that the loops(3-4) of adjacent subunits of PomA are close to each other in the assembled motor. We propose that this loop region is important for dimer formation and motor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号