首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system of an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatograph-mass spectrometer (GC–MS) was developed for the simultaneous analysis of seven barbiturates in human serum. A sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading 1.5 ml of a diluted serum sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into the GC–MS. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.1 to 10 μg ml−1 for all barbiturates extracted. The proposed method was applied to 27 clinical serum samples from three patients who were administrated secobarbital.  相似文献   

2.
A simple, rapid, sensitive and selective method has been developed for the stereospecific determination of verapamil and its metabolite, norverapamil in urine. For sample preparation we utilized a membrane-based solid-phase extraction (SPE) disk consisting of a thin, particle-loaded membrane inserted in a plastic syringe-like barrel. The particles, which may be C8 or C18 bonded phase (C8 in this work), are embedded within a matrix of PTFE (Teflon) fibrils. Overall analyte recoveries were above 85%, even at low concentration of 3.0 ng/ml with reproducibilities (C.V. values) below 13.1%. This method of extraction has the advantage of speed and considerable reduction in solvent volumes compared to conventional SPE and solvent extraction. The separation of all the enantiomers was achieved using a single chiral stationary phase column, the cellulose-based reversed-phase, Chiralcel OD-R. Analyte concentrations of less than 3.0 ng/ml could be quantitated with C.V. values below 14%. Calibration curves were linear in the range 2.5–300 ng/ml. Intra-day and inter-day reproducibilities were 10.5–14.2% at 3 ng/ml, 4.8–9.3% at 138.5 ng/ml and 7.8–10.1% at 280 ng/ml level, respectively, for all the enantiomers.  相似文献   

3.
A new method is described using solid-phase extraction (SPE) for preconcentration of articaine and the metabolite articainic acid and high-performance liquid chromatography (HPLC) for the determination of both compounds in human serum. Articaine and articainic acid were extracted in one step with SDB-RPS disk cartridges after precipitation of the serum proteins by perchloric acid. The HPLC separation was then performed on a reversed-phase C8 column using phosphate buffer–acetonitrile (88:12, v/v). UV absorption at 274 nm was used for measuring the analytes with a low limit of quantitation of about 10 ng/ml, which is appropriate for pharmacokinetic studies of low dose submucosal injections of the local anaesthetic agent articaine hydrochloride in dentistry.  相似文献   

4.
A chromatographic method was developed for the T-514 determination in Karwinskia leaves, stems and roots. A C18 analytical column and a mobile phase consisting of methanol and McIlvaine buffer (pH 3) were used. T-514 was detected using a diode array detector and the chromatograms were recorded at 269 and 410 nm. A linear dependence of a peak area on the T-514 concentration (r=0.9991) was obtained in the range of 0.126–12.6 μg/ml. Limits of T-514 quantification (signal-to-noise ratio 10) in plant samples were 126 ng/ml at 410 nm and 28 ng/ml at 269 nm. T-514 was extracted from the plant material with ethyl acetate. Optimal extraction conditions were studied: number of extraction steps, volume of extracting agent and extraction time. The extracts were cleaned up using solid-phase extraction (SPE). SPE recoveries of 99.9% and 98.4% were achieved for the T-514 concentrations of 1.4 μg/ml and 0.26 μg/ml, respectively.  相似文献   

5.
Sample pretreatment using solid-phase extraction (SPE) on cartridges filled with small-particle Styrosorb porous polystyrene-based sorbent has been used in the analysis of propranolol enantiomers in human serum by high-performance liquid chromatography (HPLC) with fluorescent detection. SPE on Sep-Pak C18 cartridges was used as a reference pretreatment method. The propranolol content of the samples was determined by achiral normal-phase HPLC and the enantiomeric ratio of propranolol (S/R) was then determined by chiral HPLC on a column with silica-bonded cellulose-tris(3,5-dimethylphenyl carbamate). Recoveries of propranolol from serum using SPE on Styrosorb and C18 phases were 97±5% and 96±5%, respectively. Detection and quantification limits for propranolol enantiomers were 4 and 7 ng/ml, respectively.  相似文献   

6.
A simple and reproducible method for the analysis of ampicillin in human serum was developed. Serum samples were extracted using solid-phase extraction disk cartridges containing a sorbent of styrene divinyl/benzene. Extracts were separated by reversed-phase C18 high-performance liquid chromatography with UV detection at 220 nm. The mobile phase consisted of acetonitrile–10 mM NaH2PO4 (6.5:93.5, v/v). Using this extraction procedure, recovery from serum was 98.4±5.6%. The quantitation limit was 0.19 μg/ml using 0.5 ml of serum. The calibration curves from 0.19 to 9.41 μg/ml were linear with correlation coefficients of 0.999. This method is suitable for therapeutic drug monitoring of ampicillin (ABPC) after oral administration of lenampicillin hydrochloride.  相似文献   

7.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

8.
Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS–MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC–NCI-MS–MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90–106% with a precision of 2.4–12.9%.  相似文献   

9.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

10.
A sensitive, robust gas chromatographic–mass spectrometric assay suitable for use in pharmacokinetic or bioequivalence studies is presented for the selective serotonin reuptake inhibitor, fluoxetine, and its major metabolite, norfluoxetine (N-desmethylfluoxetine). This method employs solid-phase extraction followed by acetylation with trifluoroacetic anhydride and analysis of the derivatives using selected ion monitoring. The lower limit of quantification was 1.0 ng/ml, and the assay was linear for both analytes from 1 to 100 ng/ml. Mean recoveries following solid-phase extraction at concentrations of 5.0, 20 and 100 ng/ml were 91% (fluoxetine) and 87% (norfluoxetine). Assay precision (as mean RSD) and accuracy (as mean relative error) for both analytes were tested at the same three nominal concentrations and were found to be within 10% in all cases. Analysis of fluoxetine concentrations in plasma samples from 18 volunteers following administration of a single 40 mg dose of fluoxetine provided the following pharmacokinetic data (mean±SD): Cmax, 32.73±9.21 ng/ml; AUC0–∞, 1627±1372 ng/ml h; Tmax, 3.08 h (median); ke, 0.022±0.007 h−1; elimination half-life, 37.69±21.70 h.  相似文献   

11.
A high-performance liquid chromatography (HPLC) analytical method for the determination of oxolinic acid and flumequine in Artemia nauplii is described. The samples were extracted and cleaned up by a solid-phase extraction (SPE) procedure using SPE C18 cartridges. Oxolinic acid and flumequine were determined by reversed-phase HPLC using a mobile phase of methanol–0.1 M phosphate buffer, pH 3 (45:55, v/v) and a UV detection wavelength of 254 nm. Calibration curves were linear for oxolinic acid in the range of 0.2–50 μg/g (r2=0.9998) and for flumequine in the range of 0.3–50 μg/g (r2=0.9994). Mean recoveries amounted to 100.8% and 98.4% for oxolinic acid and flumequine, respectively. The quantification limit was 0.2 μg/g for oxolinic acid and 0.3 μg/g for flumequine. Quantitative data from an in vivo feeding study indicated excellent uptake of both drugs by Artemia nauplii.  相似文献   

12.
A sensitive LC–MS quantitation method of cetrorelix, a novel gonadotropin releasing hormone (GnRH) antagonist, was developed. Plasma and urine samples to which brominated cetrorelix was added as an internal standard (I.S.) were purified by solid-phase extraction with C8 cartridges. The chromatographic separation was achieved on a C18 reversed-phase column using acetonitrile–water–trifluoroacetic acid (35:65:0.1, v/v/v) as mobile phase. The mass spectrometric analysis was performed by electrospray ionization mode with negative ion detection, and the adduct ions of cetrorelix and I.S. with trifluoroacetic acid were monitored in extremely high mass region of m/z 1543 and 1700, respectively. The lower limit of quantitation was 1.00 ng per 1 ml of plasma and 2.09 ng per 2 ml of urine, and the present method was applied to the analysis of pharmacokinetics of cetrorelix in human during phase 1 clinical trial.  相似文献   

13.
A sensitive and specific analytical method for a potent antitumor agent, TZT-1027, in plasma has been developed using liquid chromatography–mass spectrometry (LC–MS) with [2H4]TZT-1027 as an internal standard (I.S.). A plasma sample was purified by solid-phase extraction on a C18 cartridge, followed by solvent extraction with diethyl ether. The extract was then injected into the LC–MS system. Chromatography was carried out on a C18 reversed-phase column using acetonitrile–0.05% trifluoroacetic acid (TFA) (55:45) as a mobile phase. Mass spectrometric analysis was performed in atmospheric pressure chemical ionization (APCI) mode with positive ion detection, and the protonated molecular ions ([M+H]+) of TZT-1027 and I.S. were monitored to allow quantitation. The method was applied to the determination of TZT-1027 in human, monkey, dog, rat and mouse plasma. As far as the sample preparation was concerned, good recoveries (73.5–99.1%) were obtained. The calibration curves were linear over the range of 0.25–100 ng per 1 ml of human, dog and rat plasma, per 0.5 ml of monkey plasma, and per 0.1 ml of mouse plasma. From the intra- and inter-day accuracy and precision, the present method satisfies the accepted criteria for bioanalytical method validation. TZT-1027 was stable when stored below −15°C for 6 months in human plasma and for 3 weeks in plasma from other species. TZT-1027 was also stable in plasma through at least three freeze–thaw cycles.  相似文献   

14.
AG 331 is a novel thymidylate synthase inhibitor currently in Phase I clinical trial. To determine the pharmacokinetic parameters of AG 331 in human subjects, a suitable analytical method was developed using high-performance liquid chromatography. Serum and urine samples were prepared using both solid-phase extraction and solvent extraction. Either 4,4′-diaminodiphenyl sulfone or benz[cd]indole-2(1H)-one were used as internal standards for the method. A reversed-phase C18 analytical column completely resolved the drug and internal standard peaks from non-specific substances present in biological matrix. The method was validated for precision, accuracy, and reproducibility in serum and was linear over a concentration range of 50–2000 ng/ml, with a limit of detection of 20.0 ng/ml and a quantifiable limit of 50 ng/ml.  相似文献   

15.
A system for an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatography–mass spectrometry (GC–MS) system was developed for the simultaneous analysis of seven barbiturates in human urine. Sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading a 1.5 ml volume of a urine sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into a GC–MS system. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.02 to 10 μg/ml for all barbiturates extracted. The proposed method was applied to several clinical cases. The total analysis time for 20 samples was approximately 14 h.  相似文献   

16.
An analytical procedure to screen butorphanol in horse race urine using ELISA kits and its confirmation by GC–MS is described. Urine samples (5 ml) were subjected to enzymatic hydrolysis and extracted by solid-phase extraction. The residues were then evaporated, derivatized and injected into the GC–MS system. The ELISA test (20 μl of sample) was able to detect butorphanol up to 104 h after the intramuscular administration of 8 mg of Torbugesic, and the GC–MS method detected the drug up to 24 h in FULL SCAN or 31 h in the SIM mode. Validation of the GC–MS method in the SIM mode using nalbuphine as internal standard included linearity studies (10–250 ng/ml), recovery (±100%), intra-assay (4.1–14.9%) and inter-assay (9.3–45.1%) precision, stability (10 days), limit of detection (10 ng/ml) and limit of quantitation (20 ng/ml).  相似文献   

17.
A sample preparation method for mass chromatographic detection of doping drugs from horse plasma is described. Bond Elut Certify (1 g/6 ml) is used for the extraction of 4 ml of horse plasma. Fractionation is performed with 6 ml of CHCl3–Me2CO (8:2) and 5 ml of 1% TEA–MeOH according to its property. Simple and effective clean-up based on non-aqueous partitioning is adopted to remove co-eluted contaminants in both acid and basic fractions. Two kinds of 1-(N,N-diisopropylamino)-n-alkanes are co-injected with the sample into the GC–MS system for the calculation of the retention index. Total recoveries of 107 drugs are examined. Some data of post administration plasma are presented. This procedure achieves sufficient recoveries and clean extracts for GC–MS analysis. The method is able to detect ng/ml drug levels in horse plasma.  相似文献   

18.
A highly sensitive and selective liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry assay was developed and validated for simultaneous determination of epimeric budesonide (BUD) and fluticasone propionate (FP) in plasma. The drugs were isolated from human plasma using C18 solid-phase extraction cartridges, and epimeric BUD was acetylated with a mixture of 12.5% acetic anhydride and 12.5% triethylamine in acetonitrile to form the 21-acetyl derivatives following the solid-phase extraction. Deuterium-labelled BUD acetate with an isotopic purity >99% was synthesized and used as the internal standard. The assay was linear over the ranges 0.05–10.0 ng/ml for epimeric BUD, and 0.02–4.0 ng/ml for FP. The inter- and intra-day relative standard deviations were <14.3% in the assay concentration range.  相似文献   

19.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

20.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号