首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cloned seven transmembrane-spanning Drosophila octopamine/tyramine receptor, permanently expressed in a Chinese hamster ovary cell line, both inhibits adenylate cyclase activity and leads to the elevation of intracellular Ca2+ levels by separate G-protein-coupled pathways. Agonists of this receptor (octopamine and tyramine), differing by only a single hydroxyl group in their side chain, may be capable of differentially coupling it to different second messenger systems. Thus, a single receptor may have a different pharmacological profile depending on which second messenger system is used to assay its efficacy.  相似文献   

2.
3.
4.
Juvenile hormone hydrolysis, tyrosine decarboxylase activity, dopamine content and fitness (viability and fertility) were studied under normal and stress conditions in the adults of Drosophila melanogaster inactive strain carrying a mutation that decreases tyrosine decarboxylase activity and results in the lower contents of tyramine and octopamine. A sexual dimorphism of tyrosine decarboxylase activity, dopamine level and survival under heat stress in inactive flies was found. inactive adults showed higher dopamine levels and lower survival levels under heat stress as compared to wild type (Canton S) adults. Juvenile hormone degradation is decreased in young and increased in mature inactive females as compared to wild type. Fertility of the inactive strain did not differ from that of wild type strain under normal conditions, but after heat exposure the dynamics of its restoration was different. inactive females were found to develop the stress reaction, with juvenile hormone degradation, tyrosine decarboxylase activity, dopamine content and fertility levels used as the reaction indicators.  相似文献   

5.
6.
Cloning and characterization of a Drosophila tyramine receptor.   总被引:4,自引:3,他引:4       下载免费PDF全文
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors.  相似文献   

7.
8.
Using recombinant DNA techniques, an Escherichia coli periplasmic sulfate receptor or sulfate-binding protein involved in active transport has been overexpressed and characterized. This protein is essentially identical in size, sequence, antigenicity, and ligand affinity and specificity to the sulfate receptor from Salmonella typhimurium whose crystal structure has been refined at 2 A resolution. The dehydrated sulfate is bound in the deep cleft between the two lobes of the bilobate protein. Using the structure of the S. typhimurium as a guide, three site-directed mutants (Ser129Cys, Gly46Cys, and Ser129Cys/Gly46Cys) have been made. In the Cys129/Cys46 mutant the disulfide has been successfully introduced across the opening of the ligand-binding site cleft of the E. coli sulfate-binding protein. The dissociation of sulfate from the double mutant protein is very slow under oxidizing conditions and increases more than 200-fold when reducing agent is added. This effect is attributed to a loss of interdomain structural flexibility in the presence of the disulfide, and underscores the importance of protein conformational change in binding protein function.  相似文献   

9.
Octopamine has been shown to play major roles in invertebrate nervous systems as a neurotransmitter, neuromodulator, and neurohormone. Tyramine is the biochemical precursor of octopamine and its neuromodulatory role is now being investigated and clarified in invertebrates, particularly in insects. Both octopamine and tyramine mediate their actions via G protein-coupled receptors (GPCRs) and are believed to play important functions in the regulation of physiological processes in locust oviduct. Here we report the isolation, cloning, and tissue expression of a putative octopamine/tyramine receptor from the locust, Locusta migratoria. Degenerate oligonucleotides in PCR reactions were first used to obtain partial cDNA sequences and then these partial sequences were used in screens to obtain a full-length cDNA. The cloned cDNA is about 3.1 kb long and encodes a protein of 484 amino acid residues with typical characteristics of GPCRs including seven transmembrane domains and many signature residues. The amino acid sequence of the cloned cDNA displays sequence similarities with known GPCRs, particularly octopamine/tyramine receptors. Screening of the locust genomic DNA library resulted in isolation of a genomic DNA with the same size as the cDNA, indicating that the gene is intron-less. RT-PCR and Northern blot analyses revealed the expression of the receptor mRNA in brain, ventral nerve cord, oviduct, and midgut tissues. Southern blot analyses using EcoRI and HindIII restriction endonucleases recognized at least two distinct gene bands.  相似文献   

10.
Tabtoxin resistance protein (TTR) is an enzyme that catalyzes the acetylation of tabtoxin rendering tabtoxin-producing pathogens tolerant to their own phytotoxins. According to the structure based detoxification mechanism of TTR, three site-directed mutants Y141F, D130N and Y141F-D130N were constructed and overexpressed in E. coli. The products were then purified and their properties were analyzed by CD and DLS. Crystallization trials of two mutants Y141F andY141F-D130N were preformed.  相似文献   

11.
M J Green  J T Buckley 《Biochemistry》1990,29(8):2177-2180
The six histidines of the channel-forming protein aerolysin have been replaced one at a time with asparagine by site-directed mutagenesis, and each of the modified proteins has been purified. Three proteins had the same hemolytic activity as native toxin, but the others, those changed at His107, His132, or His332, were less able to disrupt both human and rat erythrocytes. The largest reduction in activity, more than 100-fold, was observed with the His132 mutant protein. Studies with radioiodinated samples showed that it had approximately the same affinity as native aerolysin for the rat erythrocyte receptor. However, once bound to either rat or human erythrocytes, it was much less able to carry out the next essential step in hole formation, aggregation to form a stable oligomer. Aggregation was also reduced by replacing His107, but the contrast with native aerolysin and the effect on hemolytic activity were less pronounced. The protein modified at His332 behaved in a different way from those substituted at positions 107 and 132. Its affinity for the rat erythrocyte receptor was considerably lower than the affinity of the wild-type protein, but when bound it appeared to aggregate normally. The results suggest that His132 and perhaps His107 are involved in the aggregation of aerolysin whereas His332 may be at or near the receptor binding site.  相似文献   

12.
N-acetyl-l-glutamate synthase (NAGS), the first enzyme of bacterial/plant arginine biosynthesis and an essential activator of the urea cycle in animals, is, respectively, arginine-inhibited and activated. Site-directed mutagenesis of recombinant Pseudomonas aeruginosa NAGS (PaNAGS) delineates the arginine site in the PaNAGS acetylglutamate kinase-like domain, and, by extension, in human NAGS. Key residues for glutamate binding are identified in the acetyltransferase domain. However, the acetylglutamate kinase-like domain may modulate glutamate binding, since one mutation affecting this domain increases the Km for glutamate. The effects on PaNAGS of two mutations found in human NAGS deficiency support the similarity of bacterial and human NAGSs despite their low sequence identity.  相似文献   

13.
The trace biogenic amine tyramine is present in the nervous systems of animals ranging in complexity from nematodes to mammals. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC), a member of the aromatic amino acid family, but this enzyme has not been identified in Drosophila or in higher animals. To further clarify the roles of tyramine and its metabolite octopamine, we have cloned two TDC genes from Drosophila melanogaster, dTdc1 and dTdc2. Although both gene products have TDC activity in vivo, dTdc1 is expressed nonneurally, whereas dTdc2 is expressed neurally. Flies with a mutation in dTdc2 lack neural tyramine and octopamine and are female sterile due to egg retention. Although other Drosophila mutants that lack octopamine retain eggs completely within the ovaries, dTdc2 mutants release eggs into the oviducts but are unable to deposit them. This specific sterility phenotype can be partially rescued by driving the expression of dTdc2 in a dTdc2-specific pattern, whereas driving the expression of dTdc1 in the same pattern results in a complete rescue. The disparity in rescue efficiencies between the ectopically expressed Tdc genes may reflect the differential activities of these gene products. The egg retention phenotype of the dTdc2 mutant and the phenotypes associated with ectopic dTdc expression contribute to a model in which octopamine and tyramine have distinct and separable neural activities.  相似文献   

14.
A cDNA for a member of the G protein-coupled receptor family was isolated from Drosophila using a probe derived from a human beta 2-adrenergic receptor cDNA. This Drosophila receptor gene is localized at 99A10-B1 on the right arm of chromosome 3 and is preferentially expressed in Drosophila heads. The insect octopamine receptor has been permanently expressed in mammalian cells, where it mediates the attenuation of adenylate cyclase activity and exhibits a pharmacological profile consistent with an octopamine type 1 receptor. Sequence and pharmacological comparisons indicate that the octopamine receptor is unique but closely related to mammalian adrenergic receptors, perhaps as an evolutionary precursor.  相似文献   

15.
16.
Previous studies have implicated at least two regions in alpha-tubulin that are important for the regulation of microtubule assembly. These regions include a cluster of basic residues consisting of Arg 390, His 393, and Lys 394 and the highly acidic carboxyl terminus. Lys 394 is highly reactive to HCHO and NaCNBH3. The reductive methylation of Lys 394 by these reagents is thought to be responsible for the profound inhibitory effects of low concentrations of HCHO on microtubule assembly (cf. Szasz J., M. B. Yaffe, M. Elzinga, G. S. Blank, and H. Sternlicht. 1986. Biochemistry. 25:4572-4582). In this study we reexamined the basis for this inhibition. Lys 394 in a human keratinocyte alpha-tubulin (k alpha 1) was replaced by a glutamic acid residue using site-directed mutagenesis. The mutant K394E was synthesized in vitro using rabbit reticulocyte lysates, and its ability to coassemble with bovine brain microtubule protein (MTP) before and after reaction with HCHO and NaCNBH3 was compared with that of wild-type. No differences in the coassemblies of the unmethylated proteins were detected suggesting that Lys 394 is not essential for microtubule assembly. However, methylated K394E prepared at low HCHO concentrations (< 1 mM) incorporated into microtubules to a greater extent (approximately 30-40%) than methylated wild-type. This result is consistent with the hypothesis that methylation of Lys 394 interferes with microtubule assembly. However, the extent of protection afforded by the replacement of Lys 394 with Glu 394 was less than half as large as that predicted from the earlier studies. We tentatively conclude that another residue(s) besides Lys 394 contributes significantly to the assembly-inhibition observed with low concentrations of HCHO. Since this residue(s) is less reactive than Lys 394, it would have to inhibit assembly substoichiometrically when methylated. Potential candidates for this residue include bulk lysyl residue(s), a lysyl residue(s) with intermediate reactivity toward HCHO, and the NH2-termini. The NH2-termini are especially attractive candidates since they appear to have a structural role in microtubule assembly.  相似文献   

17.
Pheromone biosynthesis-activating neuropeptide (PBAN) and pyrokinins belong to a family of insect peptide hormones that have a common FXPRLamide C-terminal ending. The G-protein-coupled receptors (GPCRs) for this peptide family were first identified from a moth and Drosophila with sequence similarity to neuromedin U receptors from vertebrates. We have characterized the PBAN-receptor (PBAN-R or PR) active binding domains using chimeric GPCRs and proposed that extracellular loop 3 is critical for ligand selection. Here, we characterized the 3rd extracellular domain of PBAN-R through site-directed point mutations. Results are discussed in context of the structural features required for receptor activation using receptor activation experiments and in silico computational modeling. This research will help in characterizing these receptors towards a goal of finding agonists and/or antagonists for PBAN/pyrokinin receptors.  相似文献   

18.
This paper reports the role of the tyramine (TA) receptor cascade in the insecticidal activity of plant essential oils. A TA receptor cDNA encoding a putative seven transmembrane domain G-protein coupled receptor was amplified from Drosophila melanogaster head cDNA phage library. The encoded protein contains 601 amino acids and has a sequence similar to other biogenic amine receptors. This protein was expressed in Drosophila S2 cells for radioligand binding studies with the ligand 3H-TA. Competitive binding studies comparing biogenic amines that could potentially function as endogenous ligands have demonstrated that this receptor had the highest affinity for TA (Ki=1.27 microM) followed by DL-octopamine, dopamine, serotonin and histamine. TA decreased the forskolin-increased cAMP levels (IC50=5.802 microM) and increased [Ca2+]i through the receptor expressed in S2 cells. The toxicity rank order of the tested plant essential oils against wild type D. melanogaster fly demonstrated a pattern similar to their effect on receptor binding activity and changes in cAMP level and [Ca2+]i. The toxicity of two of these chemicals was eliminated when tested against the TA receptor mutant (TyrRneo30) Drosophila strain. Therefore, the data indicates a correlation between cellular changes and insecticidal activity of tested plant essential oils, and suggests that the toxicity of at least two of these chemicals is mediated through the TA receptor.  相似文献   

19.
Transposition (the movement of discrete segments of DNA, resulting in rearrangement of genomic DNA) initiates when transposase forms a dimeric DNA-protein synaptic complex with transposon DNA end sequences. The synaptic complex is a prerequisite for catalytic reactions that occur during the transposition process. The transposase-DNA interactions involved in the synaptic complex have been of great interest. Here we undertook a study to verify the protein-DNA interactions that lead to synapsis in the Tn5 system. Specifically, we studied (i) Arg342, Glu344, and Asn348 and (ii) Ser438, Lys439, and Ser445, which, based on the previously published cocrystal structure of Tn5 transposase bound to a precleaved transposon end sequence, make cis and trans contacts with transposon end sequence DNA, respectively. By using genetic and biochemical assays, we showed that in all cases except one, each of these residues plays an important role in synaptic complex formation, as predicted by the cocrystal structure.  相似文献   

20.
The human prostacyclin receptor is a seven-transmembrane alpha-helical G-protein coupled receptor, which plays important roles in both vascular smooth muscle relaxation as well as prevention of blood coagulation. The position of the native ligand-binding pocket for prostacyclin as well as other derivatives of the 20-carbon eicosanoid, arachidonic acid, has yet to be determined. Through the use of prostanoid receptor sequence alignments, site-directed mutagenesis, and the 2.8-A x-ray crystallographic structure of bovine rhodopsin, we have developed a three-dimensional model of the agonist-binding pocket within the seven-transmembrane (TM) domains of the human prostacyclin receptor. Upon mutation to alanine, 11 of 29 candidate residues within TM domains II, III, IV, V, and VII exhibited a marked decrease in agonist binding. Of this group, four amino acids, Arg-279 (TMVII), Phe-278 (TMVII), Tyr-75 (TMII), and Phe-95 (TMIII), were identified (via receptor amino acid sequence alignment, ligand structural comparison, and computer-assisted homology modeling) as having direct molecular interactions with ligand side-chain constituents. This binding pocket is distinct from that of the biogenic amine receptors and rhodopsin where the native ligands (also composed of a carbon ring and a carbon chain) are accommodated in an opposing direction. These findings should assist in the development of novel and highly specific ligands including selective antagonists for further molecular pharmacogenetic studies of the human prostacyclin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号