首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of “public goods”: exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to “measure” the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters (“Liars”) who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace.  相似文献   

2.
Tumor suppressor genes   总被引:10,自引:0,他引:10  
The retinoblastoma sensitivity protein (Rb) and the p53 gene product both appear to function as negative regulators of cell division or abnormal cellular growth in some differentiated cell types. Several types of cancers have been shown to be derived from cells that have extensively mutated both alleles of one or both of these genes, resulting in a loss-of-function mutation. In the case of the p53 gene, this mutational process appears to occur in two steps, with the first mutation at the p53 locus resulting in a trans-dominant phenotype. The mutant p53 gene product enters into an oligomeric protein complex with the wild-type p53 protein derived from the other normal allele and such a complex is inactive or less efficient in its negative regulation of growth control. This intermediate stage of carcinogenesis selects for the proliferation of cells with one mutant allele, enhancing the probability of obtaining a cancer cell with both alleles damaged. The DNA tumor viruses have evolved mechanisms to interact with the Rb and p53 negative regulators of cellular growth in order to enhance their own replication in growing cells. SV40 and adenovirus type 5 produce viral encoded proteins that also form oligomeric protein complexes with p53 and Rb, presumably inactivating their functions. These viral proteins are also the oncogene products of these viruses. Thus, the mechanisms by which cancer may arise in a host, via mutations or virus infections, have fundamental common pathways effecting the same cellular genes and gene products; Rb and p53.  相似文献   

3.
4.
5.
6.
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.  相似文献   

7.
The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. These cell lineages occur within microbial communities, and multicellular organisms in the form of tumours and cancer. In contrast to an earlier study, here we show how the evolution of pleiotropic genetic architectures—which link the expression of cooperative and private traits—can protect against cheater lineages and allow cooperation to evolve. We develop an age-structured model of cellular groups and show that cooperation breaks down more slowly within groups that tie expression to a private trait than in groups that do not. We then show that this results in group selection for pleiotropy, which strongly promotes cooperation by limiting the emergence of cheater lineages. These results predict that pleiotropy will rapidly evolve, so long as groups persist long enough for cheater lineages to threaten cooperation. Our results hold when pleiotropic links can be undermined by mutations, when pleiotropy is itself costly, and in mixed-genotype groups such as those that occur in microbes. Finally, we consider features of multicellular organisms—a germ line and delayed reproductive maturity—and show that pleiotropy is again predicted to be important for maintaining cooperation. The study of cancer in multicellular organisms provides the best evidence for pleiotropic constraints, where abberant cell proliferation is linked to apoptosis, senescence, and terminal differentiation. Alongside development from a single cell, we propose that the evolution of pleiotropic constraints has been critical for cooperation in many cellular groups.

The evolution of cooperation in cellular groups is threatened by lineages of cheaters that proliferate at the expense of the group. In this study, an age-structured model of cellular groups shows that pleiotropy promotes the evolution of cooperation and may have been important for the origins of multicellularity.  相似文献   

8.
Apoptosis is a cellular process that leads to the death of damaged cells. Its malfunction can cause cancer and poor response to conventional chemotherapy. After being activated by cellular stress signals, pro-apoptotic proteins bind anti-apoptotic proteins, thus allowing apoptosis to go forward. An excess of anti-apoptotic proteins can prevent apoptosis. Designed molecules that imitate the roles of pro-apoptotic proteins can promote the death of cancer cells. In this work we have applied an insilico approach to study the binding of 2-carboxyphenolate analogues as potent inhibitors of anti-apoptotic protein Bcl-2. Molecular docking study was performed in order to find specific binding mode using AutoDock. From the docking results it was observed that zinc 2- carboxyphenolate showed strong inhibition with Bcl-2 with docking energy of -4.6 kcal/mol. The effects of the Zinc 2- hydroxybenzoate on apoptosis in HT-1080 cell lines were also analysed, which shows strong evidence for their apoptotic mode of action using flow cytometric analysis of Annexin-V. Our study gave valuable insights on inhibitor specificity of anti-apoptotic proteins and might be considered as potent chemopreventive agents.  相似文献   

9.
This is not an attempt to analyze the Last Universal Common Ancestor (LUCA) to understand the origin of living systems. We do not know what came before Gilberts' RNA world. Our analysis starts with the RNA world and with genes (biological replicators alla Dawkings) made up of RNA proteins with enzymatic catalytic functions within units that are not yet modern cells. We offer a scenario where cellular entities are very simple and without individuality; they are only simple primary units of selection (the first level of selection) in which replicators compete in the most Darwinian manner, totally deprived of cooperation and interactions among genes. The information processing system of this RNA world is inaccurate and inefficient when compared to that found in organisms that came later. Among the "genes" and the entities that harbor them, high mutation rate was the most prevalent source of variability and the only inheritance was through lateral gene transfer of mobile elements. There were no chromosomes or any other genomic organization. As millions of years accumulated, complex and organized biological structures and processes evolved thanks to the variability mustered up mostly by lateral gene transfers and mutations. With micro- and mini-satellites, lateral gene transfers became indispensable devices of selection to mold variability. Competition and Darwinian selection gave way to a new transition in evolution, one I consider ineluctable, in which cooperation among interactive genes prevailed for the sake of higher fitness. Compartmentalization constituted a major transition in evolution that spurted new types of genome organization. Minichromosomes is one of these; cellular membranes and cytoplasmic structures completed the picture of the primitive cell. However, the much talked about phylogenetic tree does not exit in that ancient LUCA. The tree has no organism at its base; only clusters of genes evoke a fragile beginning for the increasingly complex cell types that were to emerge later.  相似文献   

10.
11.
Exon duplication and alternative splicing evolved multiple times in metazoa and are of overall importance in shaping genomes and allowing organisms to produce many fold more proteins than there are genes in the genome. No other example is as striking as the one of the Down syndrome cell adhesion molecule (Dscam) of insects and crustaceans (pancrustaceans) involved in the nervous system differentiation and in the immune system. To elucidate the evolutionary history of this extraordinary gene, we investigated Dscam homologs in two basal arthropods, the myriapod Strigamia maritima and the chelicerate Ixodes scapularis. In both, Dscam diversified extensively by whole gene duplications resulting in multigene expansions. Within some of the S. maritima genes, exons coding for one of the immunoglobulin domains (Ig7) duplicated and are mutually exclusively alternatively spliced. Our results suggest that Dscam diversification was selected independently in chelicerates, myriapods, and pancrustaceans and that the usage of Dscam diversity by immune cells evolved for the first time in basal arthropods. We propose an evolutionary scenario for the appearance of the highly variable Dscam gene of pancrustaceans, adding to the understanding of how alternative splicing, exon, and gene duplication contribute to create molecular diversity associated with potentially new cellular functions.  相似文献   

12.
MOTIVATION: Cancers are caused by an accumulation of multiple independent mutations that collectively deregulate cellular pathways, e.g. such as those regulating cell division and cell-death. The publicly available Retroviral Tagged Cancer Gene Database (RTCGD) contains the data of many insertional mutagenesis screens, in which the virally induced mutations result in tumor formation in mice. The insertion loci therefore indicate the location of putative cancer genes. Additionally, the presence of multiple independent insertions within one tumor hints towards a cooperation between the insertionally mutated genes. In this study we focus on the detection of statistically significant co-mutations. RESULTS: We propose a two-dimensional Gaussian Kernel Convolution method (2DGKC), a computational technique that identifies the cooperating mutations in insertional mutagenesis data. We define the Common Co-occurrence of Insertions (CCI), signifying the co-mutations that are statistically significant across all different screens in the RTCGD. Significance estimates are made on multiple scales, and the results visualized in a scale space, thereby providing valuable extra information on the putative cooperation. The multidimensional analysis of the insertion data results in the discovery of 86 statistically significant co-mutations, indicating the presence of cooperating oncogenes that play a role in tumor development. Since oncogenes may cooperate with several members of a parallel pathway, we combined the co-occurrence data with gene family information to find significant cooperations between oncogenes and families of genes. We show, for instance, the interchangeable cooperation of Myc insertions with insertions in the Pim family. AVAILABILITY: A list of the resulting CCIs is available at: http://ict.ewi.tudelft.nl/~jeroen/CCI/CCI_list.txt.  相似文献   

13.
14.
The Araceae, a basal-most family of Alismatales that basally diverged subsequent to Acorales in monocot phylogeny, are known to have diverse modes of endosperm development: nuclear, helobial, and cellular. However, the occurrence of nuclear and helobial endosperm development has long been debated. Here, we report a (re-)investigation of endosperm development in Lysichiton, Orontium, and Symplocarpus of the Orontioideae (a basal Araceae), in which nuclear endosperm development was recorded more than 100 years ago. The results show that all three genera exhibit a cellular, rather than nuclear, endosperm development and suggest that the helobial endosperm development reported as an “unmistakable record” from Ariopsis is likely cellular. Thus the Araceae are very likely characterized by cellular endosperm development alone. An extensive comparison with other monocots in light of phylogenetic relationships demonstrates that a plesiomorphic cellular endosperm development is restricted to the three basal monocot orders Acorales, Alismatales, and Petrosaviales, in which evolutionary changes from cellular to nuclear endosperm development occurred twice as major events, once within Alismatales and once as a synapomorphy of the eight remaining monocot orders, including Dioscoreales, Liliales, Asparagales, and Poales, and that helobial endosperm development, which is known for many monocot families, evolved as homoplasy throughout the monocots.  相似文献   

15.
本研究对非小细胞肺癌(non-small cell lung carcinoma,NSCLC)基因表达数据进行差异表达分析,并与蛋白质相互作用网络(PPIN)数据进行整合,进一步利用Heinz搜索算法识别NSCLC相关的基因功能模块,并对模块中的基因进行功能(GO term)和通路(KEGG)富集分析,旨在探究肺癌发病分子机制。蛋白互作网络分析得到一个包含96个基因和117个相互作用的功能模块,以及8个对NSCLC的发生和发展起到关键作用候选基因标志物。富集分析结果表明,这些基因主要富集于基因转录催化及染色质调控等生物学过程,并在基础转录因子、黏着连接、细胞周期、Wnt信号通路及HTLV-Ⅰ感染等生物学通路中发挥重要作用。本研究对非小细胞肺癌相关的基因和生物学通路进行预测,可用于肺癌的早期诊断和早期治疗,以降低肺癌死亡率。  相似文献   

16.
17.
The centrosome, a key microtubule organizing centre, is composed of centrioles, embedded in a protein-rich matrix. Centrosomes control the internal spatial organization of somatic cells, and as such contribute to cell division, cell polarity and migration. Upon exiting the cell cycle, most cell types in the human body convert their centrioles into basal bodies, which drive the assembly of primary cilia, involved in sensing and signal transduction at the cell surface. Centrosomal genes are targeted by mutations in numerous human developmental disorders, ranging from diseases exclusively affecting brain development, through global growth failure syndromes to diverse pathologies associated with ciliary malfunction. Despite our much-improved understanding of centrosome function in cellular processes, we know remarkably little of its role in the organismal context, especially in mammals. In this review, we examine how centrosome dysfunction impacts on complex physiological processes and speculate on the challenges we face when applying knowledge generated from in vitro and in vivo model systems to human development.  相似文献   

18.
Antagonistic coevolution between maternal and fetal genes, and between maternally and paternally derived genes may have increased mammalian vulnerability to cancer. Placental trophoblast has evolved to invade maternal tissues and evade structural and immunological constraints on its invasion. These adaptations can be co-opted by cancer in intrasomatic selection. Imprinted genes of maternal and paternal origin favour different degrees of proliferation of particular cell types in which they reside. As a result, the set of genes favouring greater proliferation will be selected to evade controls on cell-cycle progression imposed by the set of genes favouring lesser proliferation. The dynamics of stem cell populations will be a particular focus of this intragenomic conflict. Gene networks that are battlegrounds of intragenomic conflict are expected to be less robust than networks that evolve in the absence of conflict. By these processes, maternal–fetal and intragenomic conflicts may undermine evolved defences against cancer.  相似文献   

19.
20.
Origin of the genes for the isoforms of creatine kinase   总被引:3,自引:0,他引:3  
Creatine kinase (CK) is a member of a family of phosphoryl transfer enzymes called phosphagen (guanidino) kinases which play a central role in cellular energy homeostasis. There are three CK isoform gene groups, each coding for proteins targeted to different intracellular compartments--cytoplasmic (CytCK), mitochondrial (MtCK) and flagellar (FlgCK). The former two CKs are either dimeric or octameric while FlgCKs are contiguous trimers consisting of three fused, complete CK domains. Conventional wisdom supports the view that CKs evolved from a cytoplasmic, monomeric ancestral protein closely related to a phosphagen kinase homologue, arginine kinase (AK). Recently, it has been shown that a demosponge (Phylum Porifera) expresses a true MtCK and two dimeric, protoflagellar CKs (protoflgCK) with great similarity to FlgCKs. To further probe the early evolution of CK, we have obtained additional sequences for Mt- and protoflgCKs from two more demosponges and from three hexactinellid (glass) sponges as well as an MtCK sequence from a basal metazoan cnidarian. Phylogenetic analyses using Maximum Likelihood (ML) of these new CK sequences with other CKs and phosphagen kinases yielded a consensus tree containing an assemblage of MtCKs and a supercluster consisting of protoflg-, Flg- and CytCKs. The MtCKs appear basal in the tree topology consistent with prior results. Within the protoflg-, Flg- and CytCK supercluster, the protoflgCKs appear to be allied to the domains of the FlgCKs, although the support is not robust. PCR amplification of genomic DNA and sequencing of the genes for Mt- and protoflgCK from the demosponge Suberites fuscus showed that the sponge MtCK shares four-five common intron:exon boundaries with invertebrate, protochordate and vertebrate MtCKs supporting a common ancestry and the extreme conservation of intron:exon organization in MtCK genes. The protoflgCK gene organization was highly divergent in relation to other CK genes but shares a common intron:exon boundary with domain 2 of the gene for the FlgCK from the tunicate Ciona intestinalis, providing support for the linkage of the protoflgCKs with the FlgCKs. Our results show that the two, major CK gene lineages are present in arguably the oldest, extant metazoan group, the hexactinellid sponges, indicating that these two genes are ancient and confirming prior work that the MtCK gene is likely basal and ancestral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号