首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a protein fold-recognition method that uses a comprehensive statistical interpretation of structural Hidden Markov Models (HMMs). The structure/fold recognition is done by summing the probabilities of all sequence-to-structure alignments. The optimal alignment can be defined as the most probable, but suboptimal alignments may have comparable probabilities. These suboptimal alignments can be interpreted as optimal alignments to the "other" structures from the ensemble or optimal alignments under minor fluctuations in the scoring function. Summing probabilities for all alignments gives a complete estimate of sequence-model compatibility. In the case of HMMs that produce a sequence, this reflects the fact that due to our indifference to exactly how the HMM produced the sequence, we should sum over all possibilities. We have built a set of structural HMMs for 188 protein structures and have compared two methods for identifying the structure compatible with a sequence: by the optimal alignment probability and by the total probability. Fold recognition by total probability was 40% more accurate than fold recognition by the optimal alignment probability. Proteins 2000;40:451-462.  相似文献   

2.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

3.
Since traditional multiple alignment formulations are NP-hard, heuristics are commonly employed to find acceptable alignments with no guaranteed performance bound. This causes a substantial difficulty in understanding what the resulting alignment means and in assessing the quality of these alignments. We propose an alternative formulation of multiple alignment based on the idea of finding a multiple alignment of k sequences which preserves k - 1 pairwise alignments as specified by edges of a given tree. Although it is well known that such a preserving alignment always exists, it did not become a mainstream method for multiple alignment since it seems that a lot of information is lost from ignoring pairwise similarities outside the tree. In contrast, by using pairwise alignments that incorporate consistency information from other sequences, we show that it is possible to obtain very good accuracy with the preserving alignment formulation. We show that a reasonable objective function to use is to find the shortest preserving alignment, and, by a reduction to a graph-theoretic problem, that the problem of finding the shortest preserving multiple alignment can be solved in polynomial time. We demonstrate the success of this approach on three sets of benchmark multiple alignments by using consistency-based pairwise alignments from the first stage of two of the best performing progressive alignment algorithms TCoffee and ProbCons and replace the second heuristic progressive step of these algorithms by the exact preserving alignment step. We apply this strategy to TCoffee and show that our approach outperforms TCoffee on two of the three test sets. We apply the strategy to a variant of ProbCons with no iterative refinements and show that our approach achieves similar or better accuracy except on one test set. We also compare our performance to ProbCons with iterative refinements and show that our approach achieves similar or better accuracy on many subcategories even without further refinements. The most important advantage of the preserving alignment formulation is that we are certain that we can solve the problem in polynomial time without using a heuristic. A software program implementing this approach (PSAlign) is available at http://faculty.cs.tamu.edu/shsze/psalign.  相似文献   

4.
SUMMARY: We present a web server that computes alignments of protein secondary structures. The server supports both performing pairwise alignments and searching a secondary structure against a library of domain folds. It can calculate global and local secondary structure element alignments. A combination of local and global alignment steps can be used to search for domains inside the query sequence or help in the discrimination of novel folds. Both the SCOP and PDB fold libraries, clustered at 95 and 40% sequence identity, are available for alignment. AVAILABILITY: The web server interface is freely accessible to academic users at http://protein.cribi.unipd.it/ssea/. The executable version and benchmarking data are available from the same web page.  相似文献   

5.
SUMMARY: Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.  相似文献   

6.
Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison.  相似文献   

7.
D J Ayers  T Huber  A E Torda 《Proteins》1999,36(4):454-461
We describe two ways of optimizing score functions for protein sequence to structure threading. The first method adjusts parameters to improve sequence to structure alignment. The second adjusts parameters so as to improve a score function's ability to rank alignments calculated in the first score function. Unlike those functions known as knowledge-based force fields, the resulting parameter sets do not rely on Boltzmann statistics, have no claim to representing free energies and are purely constructions for recognizing protein folds. The methods give a small improvement, but suggest that functions can be profitably optimized for very specific aspects of protein fold recognition. Proteins 1999;36:454-461.  相似文献   

8.
Independence of alignment and tree search   总被引:6,自引:0,他引:6  
I assert that similarity is the appropriate homology criterion for sequence alignment, as it is with morphology. Methods that select among alignments using parsimony-based tree lengths, as implemented in MALIGN and POY, arrange the data such that they are consistent with a minimum-evolution model. When combining data sets in phylogenetic analyses, we are not trying to reinforce our earlier hypotheses about relationships, but rather to test them. The severity of this test is compromised when congruence with other characters is favored when selecting among alignment parameters.  相似文献   

9.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

10.
Protein structure alignment algorithms play an important role in the studies of protein structure and function. In this paper, a novel approach for structure alignment is presented. Specifically, core regions in two protein structures are first aligned by identifying connected components in a network of neighboring geometrically compatible aligned fragment pairs. The initial alignments then are refined through a multi-objective optimization method. The algorithm can produce both sequential and non-sequential alignments. We show the superior performance of the proposed algorithm by the computational experiments on several benchmark datasets and the comparisons with the well-known structure alignment algorithms such as DALI, CE and MATT. The proposed method can obtain accurate and biologically significant alignment results for the case with occurrence of internal repeats or indels, identify the circular permutations, and reveal conserved functional sites. A ranking criterion of our algorithm for fold similarity is presented and found to be comparable or superior to the Z-score of CE in most cases from the numerical experiments. The software and supplementary data of computational results are available at .  相似文献   

11.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

12.
Structure comparison is widely used to quantify protein relationships. Although there are several approaches to calculate structural similarity, specifying significance thresholds for similarity metrics is difficult due to the inherent likeness of common secondary structure elements. In this study, metal co‐factor location is used to assess the biological relevance of structural alignments. The distance between the centroids of bound co‐factors adds a chemical and function‐relevant constraint to the structural superimposition of two proteins. This additional dimension can be used to define cut‐off values for discriminating valid and spurious alignments in large alignment sets. The hypothesis underlying our approach is that metal coordination sites constrain structural evolution, thus revealing functional relationships between distantly related proteins. A comparison of three related nitrogenases shows the sequence and fold constraints imposed on the protein structures up to 18 Å away from the centers of their bound metal clusters. Proteins 2014; 82:648–656. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Hong Y  Kang J  Lee D  van Rossum DB 《PloS one》2010,5(10):e13596
A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity). Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments and for incorporation thereof into high-performance PSSM-based alignment profiles.  相似文献   

14.
MSAT     
This article describes the development of a new method for multiple sequence alignment based on fold-level protein structure alignments, which provides an improvement in accuracy compared with the most commonly used sequence-only-based techniques. This method integrates the widely used, progressive multiple sequence alignment approach ClustalW with the Topology of Protein Structure (TOPS) topology-based alignment algorithm. The TOPS approach produces a structural alignment for the input protein set by using a topology-based pattern discovery program, providing a set of matched sequence regions that can be used to guide a sequence alignment using ClustalW. The resulting alignments are more reliable than a sequence-only alignment, as determined by 20-fold cross-validation with a set of 106 protein examples from the CATH database, distributed in seven superfold families. The method is particularly effective for sets of proteins that have similar structures at the fold level but low sequence identity. The aim of this research is to contribute towards bridging the gap between protein sequence and structure analysis, in the hope that this can be used to assist the understanding of the relationship between sequence, structure and function. The tool is available at http://balabio.dcs.gla.ac.uk/msat/.  相似文献   

15.
Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high‐quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high‐quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.  相似文献   

16.
Multiple sequence alignments are powerful tools for understanding the structures, functions, and evolutionary histories of linear biological macromolecules (DNA, RNA, and proteins), and for finding homologs in sequence databases. We address several ontological issues related to RNA sequence alignments that are informed by structure. Multiple sequence alignments are usually shown as two-dimensional (2D) matrices, with rows representing individual sequences, and columns identifying nucleotides from different sequences that correspond structurally, functionally, and/or evolutionarily. However, the requirement that sequences and structures correspond nucleotide-by-nucleotide is unrealistic and hinders representation of important biological relationships. High-throughput sequencing efforts are also rapidly making 2D alignments unmanageable because of vertical and horizontal expansion as more sequences are added. Solving the shortcomings of traditional RNA sequence alignments requires explicit annotation of the meaning of each relationship within the alignment. We introduce the notion of “correspondence,” which is an equivalence relation between RNA elements in sets of sequences as the basis of an RNA alignment ontology. The purpose of this ontology is twofold: first, to enable the development of new representations of RNA data and of software tools that resolve the expansion problems with current RNA sequence alignments, and second, to facilitate the integration of sequence data with secondary and three-dimensional structural information, as well as other experimental information, to create simultaneously more accurate and more exploitable RNA alignments.  相似文献   

17.
MOTIVATION: The maximum expected accuracy optimization criterion for multiple sequence alignment uses pairwise posterior probabilities of residues to align sequences. The partition function methodology is one way of estimating these probabilities. Here, we combine these two ideas for the first time to construct maximal expected accuracy sequence alignments. RESULTS: We bridge the two techniques within the program Probalign. Our results indicate that Probalign alignments are generally more accurate than other leading multiple sequence alignment methods (i.e. Probcons, MAFFT and MUSCLE) on the BAliBASE 3.0 protein alignment benchmark. Similarly, Probalign also outperforms these methods on the HOMSTRAD and OXBENCH benchmarks. Probalign ranks statistically highest (P-value < 0.005) on all three benchmarks. Deeper scrutiny of the technique indicates that the improvements are largest on datasets containing N/C-terminal extensions and on datasets containing long and heterogeneous length proteins. These points are demonstrated on both real and simulated data. Finally, our method also produces accurate alignments on long and heterogeneous length datasets containing protein repeats. Here, alignment accuracy scores are at least 10% and 15% higher than the other three methods when standard deviation of length is >300 and 400, respectively. AVAILABILITY: Open source code implementing Probalign as well as for producing the simulated data, and all real and simulated data are freely available from http://www.cs.njit.edu/usman/probalign  相似文献   

18.
Reinhardt A  Eisenberg D 《Proteins》2004,56(3):528-538
In fold recognition (FR) a protein sequence of unknown structure is assigned to the closest known three-dimensional (3D) fold. Although FR programs can often identify among all possible folds the one a sequence adopts, they frequently fail to align the sequence to the equivalent residue positions in that fold. Such failures frustrate the next step in structure prediction, protein model building. Hence it is desirable to improve the quality of the alignments between the sequence and the identified structure. We have used artificial neural networks (ANN) to derive a substitution matrix to create alignments between a protein sequence and a protein structure through dynamic programming (DPANN: Dynamic Programming meets Artificial Neural Networks). The matrix is based on the amino acid type and the secondary structure state of each residue. In a database of protein pairs that have the same fold but lack sequences-similarity, DPANN aligns over 30% of all sequences to the paired structure, resembling closely the structural superposition of the pair. In over half of these cases the DPANN alignment is close to the structural superposition, although the initial alignment from the step of fold recognition is not close. Conversely, the alignment created during fold recognition outperforms DPANN in only 10% of all cases. Thus application of DPANN after fold recognition leads to substantial improvements in alignment accuracy, which in turn provides more useful templates for the modeling of protein structures. In the artificial case of using actual instead of predicted secondary structures for the probe protein, over 50% of the alignments are successful.  相似文献   

19.
Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.  相似文献   

20.
Automatic assessment of alignment quality   总被引:1,自引:0,他引:1  
Multiple sequence alignments play a central role in the annotation of novel genomes. Given the biological and computational complexity of this task, the automatic generation of high-quality alignments remains challenging. Since multiple alignments are usually employed at the very start of data analysis pipelines, it is crucial to ensure high alignment quality. We describe a simple, yet elegant, solution to assess the biological accuracy of alignments automatically. Our approach is based on the comparison of several alignments of the same sequences. We introduce two functions to compare alignments: the average overlap score and the multiple overlap score. The former identifies difficult alignment cases by expressing the similarity among several alignments, while the latter estimates the biological correctness of individual alignments. We implemented both functions in the MUMSA program and demonstrate the overall robustness and accuracy of both functions on three large benchmark sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号