首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a method for the efficient and selective identification of DNA containing the 5-hydroxymethylcytosine (5-hmC) modification. This protocol takes advantage of two proteins: T4 β-glucosyltransferase (β-gt), which converts 5-hmC to β-glucosyl-5-hmC (β-glu-5-hmC), and J-binding protein 1 (JBP1), which specifically recognizes and binds to β-glu-5-hmC. We describe the steps necessary to purify JBP1 and modify this protein such that it can be fixed to magnetic beads. Thereafter, we detail how to use the JBP1 magnetic beads to obtain DNA that is enriched with 5-hmC. This method is likely to produce results similar to those of other 5-hmC pull-down assays; however, all necessary components for the completion of this protocol are readily available or can be easily and rapidly synthesized using basic molecular biology techniques. This protocol can be completed in less than 2 weeks and allows the user to isolate 5-hmC-containing genomic DNA that is suitable for analysis by quantitative PCR (qPCR), sequencing, microarray and other molecular biology assays.  相似文献   

2.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

3.
Oxidation of 5-methylcytosine (5mC) is catalyzed by ten-eleven translocation (TET) enzymes to produce 5-hydroxymethylcytosine (5hmC) and following oxidative products. The oxidized nucleotides were shown to be the intermediates for DNA demethylation, as the nucleotides are removed by base excision repair system initiated by thymine DNA glycosylase. A simple and accurate method to determine initial oxidation product 5hmC at single base resolution in genomic DNA is necessary to understand demethylation mechanism. Recently, we have developed a new catalytic oxidation reaction using micelle-incarcerated oxidants to oxidize 5hmC to form 5-formylcytosine (5fC), and subsequent bisulfite sequencing can determine the positions of 5hmC in DNA. In the present study, we described the optimization of the catalytic oxidative bisulfite sequencing (coBS-seq), and its application to the analysis of 5hmC in genomic DNA at single base resolution in a quantitative manner. As the oxidation step showed quite low damage on genomic DNA, the method allows us to down scale the sample to be analyzed.  相似文献   

4.
5.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.  相似文献   

6.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

7.
The recent discovery of genomic 5-hydroxymethylcytosine (hmC) and mutations affecting the respective Tet hydroxylases in leukemia raises fundamental questions about this epigenetic modification. We present a sensitive method for fast quantification of genomic hmC based on specific transfer of radiolabeled glucose to hmC by a purified glucosyltransferase. We determined hmC levels in various adult tissues and differentiating embryonic stem cells and show a correlation with differential expression of tet genes.  相似文献   

8.
《Epigenetics》2013,8(5):560-565
Recent studies reported the presence of 5-hydroxymethylcytosine (5 hmC) as an additional modification in mammalian genomic DNA. To date, 5 hmC has been detected only in mouse DNA isolated from embryonic stem cells, some adult tissues and in DNA from human bone marrow. Understanding its biological function will require the development of sensitive analytical methods that allow the detection and quantification of 5-hydroxymethylcytosine along with 5-methylcytosine and cytosine.

Here we report the validation of a fast and sensitive method for the quantification of global 5-hydroxymethyl-2'-deoxycytidine (5 hmdC) in DNA. The method is based on a procedure consisting of fluorescence labeling of deoxyribonucleotides and analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). A double stranded DNA fragment containing a defined number of 5 hmdC residues was used for peak assignment, to establish separation conditions and to determine the limit of detection (LOD). The method yielded a LOD for 5 hmdC of 0.45 amol, which is equivalent to approximately to one 5 hmdC per 4,000 normal nucleotides (0.025%) using 1 μg of DNA as the matrix.

By applying the calibrated assay to the analysis of various DNAs we show that 5 hmdC is present in human tissue and human cancer cell lines. We demonstrate that by using CE-LIF DNA can be analyzed in one run for both methylation and hydroxymethylation of cytosine with high sensitivity and accuracy.  相似文献   

9.
Current methods for genomic mapping of 5-hydroxymethylcytosine (5hmC) have been limited by either costly sequencing depth, high DNA input, or lack of single-base resolution. We present an approach called Reduced Representation 5-Hydroxymethylcytosine Profiling (RRHP) to map 5hmC sites at single-base resolution by exploiting the use of beta-glucosyltransferase to inhibit enzymatic digestion at the junction where adapters are ligated to a genomic library. Therefore, only library fragments presenting glucosylated 5hmC residues at the junction are sequenced. RRHP can detect sites with low 5hmC abundance, and when combined with RRBS data, 5-methylcytosine and 5-hydroxymethylcytosine can be compared at a specific site.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0456-5) contains supplementary material, which is available to authorized users.  相似文献   

10.

Background

Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.

Results

In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.

Conclusions

Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.  相似文献   

11.
The epigenetic modification of 5-hydroxymethylcytosine (5hmC) is receiving great attention due to its potential role in DNA methylation reprogramming and as a cell state identifier. Given this interest, it is important to identify reliable and cost-effective methods for the enrichment of 5hmC marked DNA for downstream analysis. We tested three commonly used affinity-based enrichment techniques; (i) antibody, (ii) chemical capture and (iii) protein affinity enrichment and assessed their ability to accurately and reproducibly report 5hmC profiles in mouse tissues containing high (brain) and lower (liver) levels of 5hmC. The protein-affinity technique is a poor reporter of 5hmC profiles, delivering 5hmC patterns that are incompatible with other methods. Both antibody and chemical capture-based techniques generate highly similar genome-wide patterns for 5hmC, which are independently validated by standard quantitative PCR (qPCR) and glucosyl-sensitive restriction enzyme digestion (gRES-qPCR). Both antibody and chemical capture generated profiles reproducibly link to unique chromatin modification profiles associated with 5hmC. However, there appears to be a slight bias of the antibody to bind to regions of DNA rich in simple repeats. Ultimately, the increased specificity observed with chemical capture-based approaches makes this an attractive method for the analysis of locus-specific or genome-wide patterns of 5hmC.  相似文献   

12.
5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)作为表观遗传的新标志物,已引起人们的极大兴趣.5hmC由TET家族酶催化氧化5-甲基胞嘧啶(5-methylcytosine,5mC)产生,被称为高等生物基因组DNA的"第六碱基".5hmC不仅可以影响基因组结构及功能,还在早期胚胎发育中发挥重要的作用.本文综述了5hmC的代谢通路、生物学功能、在基因组的分布及分析方法的研究进展.  相似文献   

13.
方科  张凯翔  王建  付志猛  赵湘辉 《遗传》2016,38(3):206-216
被称为"第六种碱基"的5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC),广泛分布于多种哺乳动物的组织和细胞中,与胚胎发育,神经系统功能以及肿瘤研究高度相关.与5-甲基胞嘧啶(5-methylcytosine, 5mC)相比,5hmC在组织中含量更低,难以精确的检测.随着研究的深入,5hmC参与的重要生物学作用逐渐被人们发现,同时也促使着5hmC的检测和定量方法不断发展.为了区分5hmC与其他胞嘧啶衍生物,很多利用化学或者酶学修饰实现靶向检测或非靶向富集5hmC的方法应运而生.因此,选择并发展灵敏,准确,可靠的5hmC检测技术对于表观遗传研究至关重要.本文重点综述了近年来发展起来的5hmC检测和测序技术,通过比较分析各种方法的优缺点,为研究人员选择特定合适的方法开展相关研究提供重要的参考.  相似文献   

14.
Recent discovery of 5-hydroxymethylcytosine (5hmC) in genomic DNA raises the question how this sixth base is recognized by cellular proteins. In contrast to the methyl-CpG binding domain (MBD) of MeCP2, we found that the SRA domain of Uhrf1, an essential factor in DNA maintenance methylation, binds 5hmC and 5-methylcytosine containing substrates with similar affinity. Based on the co-crystal structure, we performed molecular dynamics simulations of the SRA:DNA complex with the flipped cytosine base carrying either of these epigenetic modifications. Our data indicate that the SRA binding pocket can accommodate 5hmC and stabilizes the flipped base by hydrogen bond formation with the hydroxyl group.  相似文献   

15.
Epigenetic changes caused by DNA methylation and histone modifications play important roles in the regulation of various cellular processes and development. Recent discoveries of 5-methylcytosine (5mC) oxidation derivatives including 5-hydroxymethylcytosine (5hmC), 5-formylcytsine (5fC) and 5-carboxycytosine (5caC) in mammalian genome further expand our understanding of the epigenetic regulation. Analysis of DNA modification patterns relies increasingly on sequencing-based profiling methods. A number of different approaches have been established to map the DNA epigenomes with single-base resolution, as represented by the bisulfite-based methods, such as classical bisulfite sequencing (BS-seq), TAB-seq (TET-assisted bisulfite sequencing), oxBS-seq (oxidative bisulfite sequencing) and etc. These methods have been used to generate base-resolution maps of 5mC and its oxidation derivatives in genomic samples. The focus of this review will be to discuss the chemical methodologies that have been developed to detect the cytosine derivatives in the genomic DNA.  相似文献   

16.
Prenatal exposure to neurotoxicants such as lead (Pb) may cause stable changes in the DNA methylation (5mC) profile of the fetal genome. However, few studies have examined its effect on the DNA de-methylation pathway, specifically the dynamic changes of the 5-hydroxymethylcytosine (5hmC) profile. Therefore, in this study, we investigate the relationship between Pb exposure and 5mC and 5hmC modifications during early development. To study the changes in the 5hmC profile, we use a novel modification of the Infinium™ HumanMethylation450 assay (Illumina, Inc.), which we named HMeDIP-450K assay, in an in vitro human embryonic stem cell model of Pb exposure. We model Pb exposure-associated 5hmC changes as clusters of correlated, adjacent CpG sites, which are co-responding to Pb. We further extend our study to look at Pb-dependent changes in high density 5hmC regions in umbilical cord blood DNA from 48 mother-infant pairs from the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) cohort. For our study, we randomly selected umbilical cord blood from 24 male and 24 female children from the 1st and 4th quartiles of Pb levels. Our data show that Pb-associated changes in the 5hmC and 5mC profiles can be divided into sex-dependent and sex-independent categories. Interestingly, differential 5mC sites are better markers of Pb-associated sex-dependent changes compared to differential 5hmC sites. In this study we identified several 5hmC and 5mC genomic loci, which we believe might have some potential as early biomarkers of prenatal Pb exposure.  相似文献   

17.
张燕霞  高可润  禹顺英 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine, 5mC)在哺乳动物中是一种常见的表观遗传修饰, 在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现, 除了5mC外, 胞嘧啶碱基的另一种修饰-5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)在哺乳动物的多种组织中有着丰富的表达, 它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

18.
Zhang YX  Gao KR  Yu SY 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine,5mC)在哺乳动物中是一种常见的表观遗传修饰,在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现,除了5mC外,胞嘧啶碱基的另一种修饰—5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)在哺乳动物的多种组织中有着丰富的表达,它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

19.
20.
Xu Y  Wu F  Tan L  Kong L  Xiong L  Deng J  Barbera AJ  Zheng L  Zhang H  Huang S  Min J  Nicholson T  Chen T  Xu G  Shi Y  Zhang K  Shi YG 《Molecular cell》2011,42(4):451-464
DNA methylation at the 5 position of cytosine (5mC) in the mammalian genome is a key epigenetic event critical for various cellular processes. The ten-eleven translocation (Tet) family of 5mC-hydroxylases, which convert 5mC to 5-hydroxymethylcytosine (5hmC), offers a way for dynamic regulation of DNA methylation. Here we report that Tet1 binds to unmodified C or 5mC- or 5hmC-modified CpG-rich DNA through its CXXC domain. Genome-wide mapping of Tet1 and 5hmC reveals mechanisms by which Tet1 controls 5hmC and 5mC levels in mouse embryonic stem cells (mESCs). We also uncover a comprehensive gene network influenced by Tet1. Collectively, our data suggest that Tet1 controls DNA methylation both by binding to CpG-rich regions to prevent unwanted DNA methyltransferase activity, and by converting 5mC to 5hmC through hydroxylase activity. This Tet1-mediated antagonism of CpG methylation imparts differential maintenance of DNA methylation status at Tet1 targets, ultimately contributing to mESC differentiation and the onset of embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号