首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Dicarbonyl/l ‐xylulose reductase (DCXR; SDR20C1), a member of the short‐chain dehydrogenase/reductase (SDR) superfamily catalyzes the reduction of α‐dicarbonyl compounds and monosaccharides. Its role in the metabolism of l ‐xylulose has been known since 1970, when essential pentosuria was found to be associated with DCXR deficiency. Despite its early discovery, our knowledge about the role of human DCXR in normal physiology and pathophysiology is still incomplete. Sporadic studies have demonstrated aberrant expression in several cancers, but their physiological significance is unknown. In reproductive medicine, where DCXR is commonly referred to as ‘sperm surface protein P34H’, it serves as marker for epididymal sperm maturation and is essential for gamete interaction and successful fertilization. DCXR exhibits a multifunctional nature, both acting as a carbonyl reductase and also performing non‐catalytic functions, possibly resulting from interactions with other proteins. Recent observations associate DCXR with a role in cell adhesion, pointing to a novel function involving tumour progression and possibly metastasis. This review summarizes the current knowledge about human DCXR and its orthologs from mouse and Caenorhabditis elegans (DHS‐21) with an emphasis on its multifunctional characteristics. Due to its close structural relationship with DCXR, carbonyl reductase 2 (Cbr2), a tetrameric enzyme found in several non‐primate species is also discussed. Similar to human DCXR, Cbr2 from golden hamster (P26h) and cow (P25b) is essential for sperm–zona pellucida interaction and fertilization. Because of the apparent similarity of these two proteins and the inconsistent use of alternative names previously, we provide an overview of the systematic classification of DCXR and Cbr2 and a phylogenetic analysis to illustrate their ancestry.  相似文献   

2.
Wu Q  Xu M  Cheng C  Zhou Z  Huang Y  Zhao W  Zeng L  Xu J  Fu X  Ying K  Xie Y  Mao Y 《Molecular biology reports》2001,28(4):193-198
Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.  相似文献   

3.
DHRS4, a member of the short-chain dehydrogenase/reductase superfamily, reduces all-trans-retinal and xenobiotic carbonyl compounds. Human DHRS4 differs from other animal enzymes in kinetic constants for the substrates, particularly in its low reactivity to retinoids. We have found that pig, rabbit and dog DHRS4s reduce benzil and 3-ketosteroids into S-benzoin and 3α-hydroxysteroids, respectively, in contrast to the stereoselectivity of human DHRS4 which produces R-benzoin and 3β-hydroxysteroids. Among substrate-binding residues predicted from the crystal structure of pig DHRS4, F158 and L161 in the animal DHRS4 are serine and phenylalanine, respectively, in the human enzyme. Double mutation (F158S/L161F) of pig DHRS4 led to an effective switch of its substrate affinity and stereochemistry into those similar to human DHRS4. The roles of the two residues in determining the stereospecificity in 3-ketosteroid reduction were confirmed by reverse mutation (S158F/F161L) in the human enzyme. The stereochemical control was evaluated by comparison of the 3D models of pig wild-type and mutant DHRS4s with the modeled substrates. Additional mutation of T177N into the human S158F/F161L mutant resulted in almost complete kinetic conversion into a pig DHRS4-type form, suggesting a role of N177 in forming the substrate-binding cavity through an intersubunit interaction in pig and other animal DHRS4s, and explaining why the human enzyme shows low reactivity towards retinoids.  相似文献   

4.
Human DHRS2 and DHRS4 genes code for similar NADP-dependent short-chain carbonyl-reductase enzymes having different substrate specificity. Human DHRS2 and DHRS4 enzymes share several common sequence motives including residues responsible for coenzyme binding as well as for the intimate catalytic oxido-reductase mechanism, while their substrate-binding sequences have very low similarity. We found that DHRS2 and DHRS4 genes are syntenic outparalogues originated from a duplication of the DHRS4 gene that took place before the formation of the mammalian clade. DHRS2 gene evolved more rapidly and underwent positive selection on more sites than the DHRS4 gene. DHRS2 sites under positive selection were mainly located on the enzyme active site thus showing that substrate specificity drove the divergence from the DHRS4 enzyme. Rapid divergent evolution brought the human DHRS2 enzyme to have subcellular localization, synthesis regulation and specialized cellular functions very different from those of the human DHRS4 enzyme.  相似文献   

5.
To this day, a significant proportion of the human genome remains devoid of functional characterization. In this study, we present evidence that the previously functionally uncharacterized product of the human DHRS10 gene is endowed with 17beta-HSD (17beta-hydroxysteroid dehydrogenase) activity. 17beta-HSD enzymes are primarily involved in the metabolism of steroids at the C-17 position and also of other substrates such as fatty acids, prostaglandins and xenobiotics. In vitro, DHRS10 converts NAD+ into NADH in the presence of oestradiol, testosterone and 5-androstene-3beta,17beta-diol. Furthermore, the product of oestradiol oxidation, oestrone, was identified in intact cells transfected with a construct plasmid encoding the DHRS10 protein. In situ fluorescence hybridization studies have revealed the cytoplasmic localization of DHRS10. Along with tissue expression data, this suggests a role for DHRS10 in the local inactivation of steroids in the central nervous system and placenta. The crystal structure of the DHRS10 apoenzyme exhibits secondary structure of the SDR (short-chain dehydrogenase/reductase) family: a Rossmann-fold with variable loops surrounding the active site. It also reveals a broad and deep active site cleft into which NAD+ and oestradiol can be docked in a catalytically competent orientation.  相似文献   

6.
The progress in genome characterizations has opened new routes for studying enzyme families. The availability of the human genome enabled us to delineate the large family of short-chain dehydrogenase/reductase (SDR) members. Although the human genome releases are not yet final, we have already found 63 members. We have also compared these SDR forms with those of three model organisms: Caenorhabditis elegans, Drosophila melanogaster, and Arabidopsis thaliana. We detect eight SDR ortholog clusters in a cross-genome comparison. Four of these clusters represent extended SDR forms, a subgroup found in all life forms. The other four are classical SDRs with activities involved in cellular differentiation and signalling. We also find 18 SDR genes that are present only in the human genome of the four genomes studied, reflecting enzyme forms specific to mammals. Close to half of these gene products represent steroid dehydrogenases, emphasizing the regulatory importance of these enzymes.  相似文献   

7.
Porcine testicular carbonyl reductase (PTCR) belongs to the short chain dehydrogenases/reductases (SDR) superfamily and catalyzes the NADPH-dependent reduction of ketones on steroids and prostaglandins. The enzyme shares nearly 85% sequence identity with the NADPH-dependent human 15-hydroxyprostaglandin dehydrogenase/carbonyl reductase. The tertiary structure of the enzyme at 2.3 A reveals a fold characteristic of the SDR superfamily that uses a Tyr-Lys-Ser triad as catalytic residues, but exhibits neither the functional homotetramer nor the homodimer that distinguish all SDRs. It is the first known monomeric structure in the SDR superfamily. In PTCR, which is also active as a monomer, a 41-residue insertion immediately before the catalytic Tyr describes an all-helix subdomain that packs against interfacial helices, eliminating the four-helix bundle interface conserved in the superfamily. An additional anti-parallel strand in the PTCR structure also blocks the other strand-mediated interface. These novel structural features provide the basis for the scaffolding of one catalytic site within a single molecule of the enzyme.  相似文献   

8.
DHRS4/NRDR基因编码一种属于SDR家族的酶,在维甲酸合成、类固醇代谢和苯甲基代谢中发挥生物合成催化作用.DHRS4基因定位于14q11-2,有两个相似的拷贝基因,分别为DHRS4L2和DHRS4L1.我们前期发现了DHRS4L2基因一个上游转录起始位点,命名为DHRS4L2-Ea.在本研究中,我们用RT-PCR和双脱氧测序法发现一个新的从DHRS4L2-Ea转录的选择性剪接亚型DHRS4L2-900a(KC237374).同时RT-PCR结果显示在SK-N-SH细胞DHRS4L2-Ea选择性剪接亚型中DHRS4L2 iso(AY616183)表达最多,为主要亚型.在SK-N-SH细胞过表达DHRS4L2-800a(AY920361)使DHRS4L2-Ea 基因下游CPNE6 mRNA表达下调.在HeLa细胞过表达DHRS4L2 800a(AY920361)或DHRS4L2-900a(KC237374) 进一步表明DHRS4L2 Ea抑制CPNE6表达的作用.定量PCR结果显示si-RNA抑制DHRS4L2-Ea表达使CPNE6 mRNA表达上调.亚硫酸盐测序结果显示在SK-N-SH转染DHRS4L2-800a(AY920361)的样本中CPNE6基因DNA CpG甲基化增加.综上所述,本研究揭示DHRS4L2表达的非编码RNA抑制其下游基因CPNE6的表达.  相似文献   

9.
Human DHRS4 is a peroxisomal member of the short-chain dehydrogenase/reductase superfamily, but its enzymatic properties, except for displaying NADP(H)-dependent retinol dehydrogenase/reductase activity, are unknown. We show that the human enzyme, a tetramer composed of 27 kDa subunits, is inactivated at low temperature without dissociation into subunits. The cold inactivation was prevented by a mutation of Thr177 with the corresponding residue, Asn, in cold-stable pig DHRS4, where this residue is hydrogen-bonded to Asn165 in a substrate-binding loop of other subunit. Human DHRS4 reduced various aromatic ketones and α-dicarbonyl compounds including cytotoxic 9,10-phenanthrenequinone. The overexpression of the peroxisomal enzyme in cultured cells did not increase the cytotoxicity of 9,10-phenanthrenequinone. While its activity towards all-trans-retinal was low, human DHRS4 efficiently reduced 3-keto-C19/C21-steroids into 3β-hydroxysteroids. The stereospecific conversion to 3β-hydroxysteroids was observed in endothelial cells transfected with vectors expressing the enzyme. The mRNA for the enzyme was ubiquitously expressed in human tissues and several cancer cells, and the enzyme in HepG2 cells was induced by peroxisome-proliferator-activated receptor α ligands. The results suggest a novel mechanism of cold inactivation and role of the inducible human DHRS4 in 3β-hydroxysteroid synthesis and xenobiotic carbonyl metabolism.  相似文献   

10.
Thermus thermophilus HB8 is a hyperthermophilic bacterium, thriving at environmental temperature near 80 degrees C. The genomic analysis of this bacterium predicted 18 genes for proteins belonging to the short-chain dehydrogenase/reductases (SDR) superfamily, but their functions remain unknown. A SDR encoded in a gene (TTHA0369) was chosen for functional and structural characterization. Enzymatic assays revealed that the recombinant tetrameric protein has a catalytic activity as NAD(+)-dependent aldose 1-dehydroganse, which accepts various aldoses such as d-fucose, d-galactose, d-glucose, l-arabinose, cellobiose and lactose. The enzyme also oxidized non-sugar alicyclic alcohols, and was competitively inhibited by hexestrol, 1,10-phenanthroline, 2,3-benzofuran and indole. The enzyme was stable at pH 2-13 and up to 85 degrees C. We have determined the crystal structure of the enzyme-NAD(+) binary complex at 1.65A resolution. The structure provided evidence for the strict coenzyme specificity and broad substrate specificity of the enzyme. Additionally, it has unusual features, aromatic-aromatic interactions among Phe141 and Phe249 in the subunit interface and hydrogen networks around the C-terminal Asp-Gly-Gly sequence at positions 242-244. Stability analysis of the mutant D242N, F141A and F249A enzymes indicated that the two unique structural features contribute to the hyperthermostability of the enzyme. This study demonstrates that aldose 1-dehydrogenase is a member of the SDR superfamily, and provides a novel structural basis of thermostability.  相似文献   

11.
In this report, we first cloned a cDNA for a protein that is highly expressed in mouse kidney and then isolated its counterparts in human, rat hamster, and guinea pig by polymerase chain reaction-based cloning. The cDNAs of the five species encoded polypeptides of 244 amino acids, which shared more than 85% identity with each other and showed high identity with a human sperm 34-kDa protein, P34H, as well as a murine lung-specific carbonyl reductase of the short-chain dehydrogenase/reductase superfamily. In particular, the human protein is identical to P34H, except for one amino acid substitution. The purified recombinant proteins of the five species were about 100-kDa homotetramers with NADPH-linked reductase activity for alpha-dicarbonyl compounds, catalyzed the oxidoreduction between xylitol and l-xylulose, and were inhibited competitively by n-butyric acid. Therefore, the proteins are designated as dicarbonyl/l-xylulose reductases (DCXRs). The substrate specificity and kinetic constants of DCXRs for dicarbonyl compounds and sugars are similar to those of mammalian diacetyl reductase and l-xylulose reductase, respectively, and the identity of the DCXRs with these two enzymes was demonstrated by their co-purification from hamster and guinea pig livers and by protein sequencing of the hepatic enzymes. Both DCXR and its mRNA are highly expressed in kidney and liver of human and rodent tissues, and the protein was localized primarily to the inner membranes of the proximal renal tubules in murine kidneys. The results imply that P34H and diacetyl reductase (EC ) are identical to l-xylulose reductase (EC ), which is involved in the uronate cycle of glucose metabolism, and the unique localization of the enzyme in kidney suggests that it has a role other than in general carbohydrate metabolism.  相似文献   

12.
Substrate specificity of three prostaglandin dehydrogenases   总被引:3,自引:0,他引:3  
Studies on the substrate specificity, kcat/Km, and effect of inhibitors on the human placental NADP-linked 15-hydroxyprostaglandin dehydrogenase (9-ketoprostaglandin reductase) indicate that it is very similar to a human brain carbonyl reductase which also possesses 9-ketoprostaglandin reductase activity. These observations led to a comparison of three apparently homogeneous 15-hydroxyprostaglandin dehydrogenases with varying amounts of 9-ketoprostaglandin reductase activity: an NAD- and an NADP-linked enzyme from human placenta and an NADP-linked enzyme from rabbit kidney. All three enzymes are carbonyl reductases for certain non-prostaglandin compounds. The placental NAD-linked enzyme, which has no 9-ketoprostaglandin reductase activity, is the most specific of the three. Although it has carbonyl reductase activity, a comparison of the Km and kcat/Km for prostaglandin and non-prostaglandin substrates of this enzyme suggests that its most likely function is as a 15-hydroxyprostaglandin dehydrogenase. The results of similar comparisons imply that the other two enzymes may function as less specific carbonyl reductases.  相似文献   

13.
14.
Recently, the NADPH-dependent short-chain dehydrogenase/reductase (SDR) salutaridine reductase (E.C. 1.1.1.248) implicated in morphine biosynthesis was cloned from Papaver somniferum. In this report, a homology model of the Papaver bracteatum homolog was created based on the x-ray structure of human carbonyl reductase 1. The model shows the typical alpha/beta-folding pattern of SDRs, including the four additional helices alphaF'-1 to alphaF'-4 assumed to prevent the dimerization of the monomeric short-chain dehydrogenases/reductases. Site-directed mutagenesis of asparagine-152, serine-180, tyrosine-236, and lysine-240 resulted in enzyme variants with strongly reduced performance or inactive enzymes, showing the involvement of these residues in the proton transfer system for the reduction of salutaridine. The strong preference for NADPH over NADH could be abolished by replacement of arginine residues 44 and 48 by glutamic acid, confirming the interaction between the arginines and the 2'-phosphate group. Docking of salutaridine into the active site revealed nine amino acids presumably responsible for the high substrate specificity of salutaridine reductase. Some of these residues are arranged in the right position by an additional alphaE' helix, which is not present in SDRs analyzed so far. Enzyme kinetic data from mutagenic replacement emphasize the critical role of these residues in salutaridine binding and provide the first data on the molecular interaction of benzylisoquinoline alkaloids with enzymes.  相似文献   

15.
Collagens, modifying enzymes and their mutations in humans, flies and worms   总被引:20,自引:0,他引:20  
Collagens and proteins with collagen-like domains form large superfamilies in various species, and the numbers of known family members are increasing constantly. Vertebrates have at least 27 collagen types with 42 distinct polypeptide chains, >20 additional proteins with collagen-like domains and approximately 20 isoenzymes of various collagen-modifying enzymes. Caenorhabditis elegans has approximately 175 cuticle collagen polypeptides and two basement membrane collagens. Drosophila melanogaster has far fewer collagens than many other species but has approximately 20 polypeptides similar to the catalytic subunits of prolyl 4-hydroxylase, the key enzyme of collagen synthesis. More than 1300 mutations have so far been characterized in 23 of the 42 human collagen genes in various diseases, and many mouse models and C. elegans mutants are also available to analyse the collagen gene family and their modifying enzymes.  相似文献   

16.
Short-chain dehydrogenases/reductases (SDR) are defined by distinct, common sequence motifs but constitute a functionally heterogenous superfamily of enzymes. At present, well over 1600 members from all forms of life are annotated in databases. Using the defined sequence motifs as queries, 37 distinct human members of the SDR family can be retrieved. The functional assignments of these forms fall minimally into three main groups, enzymes involved in intermediary metabolism, enzymes participating in lipid hormone and mediator metabolism, and open reading frames (ORFs) of yet undeciphered function. This overview, prepared just before completion of the human genome project, gives the different human SDR forms and relates them to human diseases.  相似文献   

17.
Short-chain dehydrogenases/reductases (SDR) are defined by distinct, common sequence motifs but constitute a functionally heterogenous superfamily of enzymes. At present, well over 1600 members from all forms of life are annotated in databases. Using the defined sequence motifs as queries, 37 distinct human members of the SDR family can be retrieved. The functional assignments of these forms fall minimally into three main groups, enzymes involved in intermediary metabolism, enzymes participating in lipid hormone and mediator metabolism, and open reading frames (ORFs) of yet undeciphered function. This overview, prepared just before completion of the human genome project, gives the different human SDR forms and relates them to human diseases.  相似文献   

18.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11ß-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

19.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11beta-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

20.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号