首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most of the many biological effects of estrogens are mediated via the estrogen receptors ERα and β. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERβ-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3β,17β-diol (Aene-diol) and 5α-androstane-3β,17β-diol (3β-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7α-hydroxy-DHEA, previously suggested to affect ERβ-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3β-Adiol. CYP7B1-mediated metabolism of 3β-Adiol has been proposed to influence ERβ-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERα and β and that CYP7B1-mediated conversion of Aene-diol into a 7α-hydroxymetabolite will result in loss of action.  相似文献   

2.
The current study examines regulation of CYP7B1, a DHEA 7alpha-hydroxylase, by sex hormones. Transfection with estrogen receptor alpha and treatment with 17beta-estradiol in human embryonic kidney 293 cells significantly increased CYP7B1 catalytic activity and mRNA, and stimulated a human CYP7B1 reporter gene. Transfection with estrogen receptor beta showed similar but less significant effects. In the absence of receptors, 17beta-estradiol suppressed CYP7B1 activity, suggesting that estrogenic effects may be different in cells not expressing receptors. Quantitation of CYP7B1 mRNA in adult and fetal human tissues showed markedly higher CYP7B1 mRNA levels in fetal tissues compared with the corresponding adult ones, except in the liver. This indicates a tissue-specific, developmental regulation of CYP7B1 and suggests an important function for this enzyme in fetal life. DHEA secreted by fetal adrenals is an essential precursor for placental estrogen formation. Since CYP7B1 diverts DHEA from the sex hormone biosynthetic pathway, estrogen receptor-mediated up-regulation of CYP7B1 should lead to less DHEA available for sex hormone synthesis and may help to maintain normal levels of estrogens and androgens in human tissues, especially during fetal development. Regulation by estrogens may also be of importance in other processes where CYP7B1 is involved, including cholesterol homeostasis, cellular proliferation, and CNS function.  相似文献   

3.
4.
CYP7B1, a cytochrome P450 enzyme, metabolizes several steroids involved in hormonal signaling including 5alpha-androstane-3beta,17beta-diol (3beta-Adiol), an estrogen receptor agonist, and dehydroepiandrosterone, a precursor for sex hormones. Previous studies have suggested that CYP7B1-dependent metabolism involving dehydroepiandrosterone or 3beta-Adiol may play an important role for estrogen receptor beta-mediated signaling. However, conflicting data are reported regarding the influence of different CYP7B1-related steroids on estrogen receptor beta activation. In the present study, we investigated CYP7B1-mediated conversions of dehydroepiandrosterone and 3beta-Adiol in porcine microsomes and human kidney cells. As part of these studies, we compared the effects of 3beta-Adiol (a CYP7B1 substrate) and 7alpha-hydroxy-dehydroepiandrosterone (a CYP7B1 product) on estrogen receptor beta activation. The data obtained indicated that 3beta-Adiol is a more efficient activator, thus lending support to the notion that CYP7B1 catalysis may decrease estrogen receptor beta activation. Our data on metabolism indicate that the efficiencies of CYP7B1-mediated hydroxylations of dehydroepiandrosterone and 3beta-Adiol are very similar. The enzyme catalyzed both reactions at a similar rate and the K(cat)/K(m) values were in the same order of magnitude. A high dehydroepiandrosterone/3beta-Adiol ratio in the incubation mixtures, similar to the ratio of these steroids in many human tissues, strongly suppressed CYP7B1-mediated 3beta-Adiol metabolism. As the efficiencies of CYP7B1-mediated hydroxylation of dehydroepiandrosterone and 3beta-Adiol are similar, we propose that varying steroid concentrations may be the most important factor determining the rate of CYP7B1-mediated metabolism of dehydroepiandrosterone or 3beta-Adiol. Consequently, tissue-specific steroid concentrations may have a strong impact on CYP7B1-dependent catalysis and thus on the levels of different CYP7B1-related steroids that can influence estrogen receptor beta signaling.  相似文献   

5.
The current study presents data indicating that 5α-androstane-3α,17β-diol (3α-Adiol) undergoes a previously unknown metabolism into hydroxymetabolites, catalyzed by CYP7B1. 3α-Adiol is an androgenic steroid which serves as a source for the potent androgen dihydrotestosterone and also can modulate gamma-amino butyric acid A (GABAA) receptor function in the brain. The steroid hydroxylase CYP7B1 is known to metabolize cholesterol derivatives, sex hormone precursors and certain estrogens, but has previously not been thought to act on androgens or 3α-hydroxylated steroids. 3α-Adiol was found to undergo NADPH-dependent metabolism into 6- and 7-hydroxymetabolites in incubations with porcine microsomes and human kidney-derived HEK293 cells, which are high in CYP7B1 content. This metabolism was suppressed by addition of steroids known to be metabolized by CYP7B1. In addition, 3α-Adiol significantly suppressed CYP7B1-mediated catalytic reactions, in a way as would be expected for substrates that compete for the same enzyme. Recombinant expression of human CYP7B1 in HEK293 cells significantly increased the rate of 3α-Adiol hydroxylation. Furthermore, the observed hydroxylase activity towards 3α-Adiol was very low or undetectable in livers of Cyp7b1(?/?) knockout mice. The present results indicate that CYP7B1-mediated catalysis may play a role for control of the cellular levels of androgens, not only of estrogens. These findings suggest a previously unknown mechanism for metabolic elimination of 3α-Adiol which may impact intracellular levels of dihydrotestosterone and GABAA-modulating steroids.  相似文献   

6.
The widely expressed steroid hydroxylase CYP7B1 is involved in metabolism of a number of steroids reported to influence estrogen and androgen signaling. Several studies by us and other investigators have linked this enzyme to effects on estrogen receptor activation. In a previous report we examined the effect of CYP7B1-mediated hormone metabolism for estrogen-mediated response in kidney-derived HEK293 cells. In the current study we used an androgen response element (ARE) reporter system to examine androgen-dependent response of some CYP7B1 substrates and CYP7B1-formed metabolites in several cell lines derived from different tissues. The results indicate significantly lower androgen receptor activation by CYP7B1-formed steroid metabolites than by the corresponding steroid substrates, suggesting that CYP7B1-mediated catalysis may decrease some androgenic responses. Thus, CYP7B1-dependent metabolism may be of importance not only for estrogenic signaling but also for androgenic. This finding, that CYP7B1 activity may be a regulator of androgenic signaling by converting AR ligands into less active metabolites, is also supported by real-time RT-PCR experiment where a CYP7B1 substrate, but not the corresponding product, was able to stimulate known androgen-sensitive genes. Furthermore, our data indicate that the effects of some steroids on hormone response element reporter systems are cell line-specific. For instance, despite transfection of the same reporter systems, 5-androstene-3β,17β-diol strongly activates an androgen-dependent response element in prostate cancer cells whereas it elicits only ER-dependent responses in kidney HEK293 cells. Potential roles of cell-specific metabolism or comodulator expression for the observed differences are discussed.  相似文献   

7.
8.
In the CNS, steroid hormones play a major role in the maintenance of brain homeostasis and it's response to injury. Since activated microglia are the pivotal immune cell involved in neurodegeneration, we investigated the possibility that microglia provide a discrete source for the metabolism of active steroid hormones. Using RT-PCR, our results showed that mouse microglia expressed mRNA for 17β-hydroxysteroid dehydrogenase type 1 and steroid 5-reductase type 1, which are involved in the metabolism of androgens and estrogens. Microglia also expressed the peripheral benzodiazepine receptor and steroid acute regulatory protein; however, the enzymes required for de novo formation of progesterone and DHEA from cholesterol were not expressed. To test the function of these enzymes, primary microglia cultures were incubated with steroid precursors, DHEA and AD. Microglia preferentially produced delta-5 androgens (Adiol) from DHEA and 5-reduced androgens from AD. Adiol behaved as an effective estrogen receptor agonist in neuronal cells. Activation of microglia with pro-inflammatory factors, LPS and INFγ did not affect the enzymatic properties of these proteins. However, PBR ligands reduced TNF production signifying an immunomodulatory role for PBR. Collectively, our results suggest that microglia utilize steroid-converting enzymes and related proteins to influence inflammation and neurodegeneration within microenvironments of the brain.  相似文献   

9.
The rate of aromatization of 4-androstenedione (AD) and 7-hydroxylation of dehydroepiandrosterone (DHEA) by different neuronal cell lines from fetal rat and mouse brain was compared to that of embryonic rat hippocampal cells in primary culture. The (3)H-labeled steroids were incubated with the cells and the metabolites extracted and separated by thin layer chromatography (TLC), as well as analyzed by high-performance liquid chromatography (HPLC) for further identification. All cell types produced estrone (E(1)) and estradiol (E(2)) from [(3)H]AD but the rate of aromatization was lowest with the rat hippocampal cells in primary culture. With [(3)H]DHEA, BHc.2 mouse hippocampal cells and E(t)C.1 neurons behaved like the mixed cells from rat hippocampus, forming 7-hydroxy DHEA as the almost exclusive product. In contrast, mouse brain BV2 microglia were virtually unable to hydroxylate DHEA at C-7 and yielded estrogen and more testosterone (T) than other cell types tested. These experiments highlight the pivotal role of 3beta-hydroxysteroid dehydrogenase/ketoisomerase in the control of AD formation for its subsequent aromatization to estrogen. It raises the possibility that differences in metabolism of DHEA by certain brain cells could account for differences in their immunomodulatory and neuroprotective functions. Some could exert their effects by converting DHEA to its 7-hydroxylated form while others, like BV2 microglia, by converting DHEA primarily to other C-19 steroids and to estrogen by way of AD.  相似文献   

10.
Lathe R 《Steroids》2002,67(12):967-977
B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.  相似文献   

11.
Albumin secretion, expression of cytochrome P450 dependent mono-oxygenases (CYPs) and their inducibility by well-known inducers were evaluated during 1 week in collagen type I gel sandwich and immobilisation cultures of adult primary rat hepatocytes. Albumin secretion increased during culture time and, following an initial decrease, CYP biotransformation activities remained stable for at least 7 days. Better preservation results were observed in the collagen gel sandwich culture than in the immobilisation model. The inducibility of CYPs by beta-naphthoflavone (beta-NF), 3- methylcholanthrene (3-MC), phenobarbital (PB) and dexamethasone (DEX) was studied in both collagen gel hepatocyte cultures. Exposure of the cells to either 5microM 3-MC or 25 microM beta-NF, added to the culture medium, resulted in strong increases of CYP1A1/2 activity in both culture models. Treatment with PB (3.2 mM) resulted in an increase in the CYP2B activity and a higher hydroxylation of testosterone in the 16alpha-position (CYP2B1/2 and CYP2C11), the 7alpha-position (CYP2A1/2), and the 6beta-position (CYP3A1). DEX (10 microM) markedly increased testosterone 6beta- and 7alpha-hydroxylation. Expression and induction experiments of CYP proteins exposed to these molecules confirmed the results of the CYP activity measurements. The patterns of CYP induction in collagen gel cultures of rat hepatocytes were similar to those observed in vivo. Consequently, collagen gel cultures and, more specifically, collagen gel sandwich cultures seem to be suitable as in vitro models for evaluating xenobiotics as potential inducers of CYP-enzymes.  相似文献   

12.
The rate of metabolism of the multifunctional neurosteroid, dehydroepiandrosterone (DHEA), by embryonic rat hippocampal cells maintained in culture was compared to that of 4-androstenedione (AD), the immediate precursor of estrone (E1). The experiments were carried out to assess the relative contribution of DHEA, its 7-hydroxylated metabolites and estrogen on their reported effects on memory and neuroprotection. The 3H-labeled steroids of high specific radioactivity were incubated for 1, 8, 24 and 48 h and the putative metabolites extracted from the culture medium with acetone-ethyl acetate before separation by TLC for radioassay. [3H]DHEA (2.0 ng/5x10(5) cells) yielded primarily the 7alpha- and 7beta-hydroxylated steroids in an almost equal ratio under conditions that resembled those used by others to study the protection of neurons by hippocampal astrocytes against excitatory amino acid-induced toxicity. The rate of conversion of DHEA to AD, and particularly to E1, was much lower. With [3H]AD as substrate, significant aromatization to estrogen occurred only after 24 h when most of [3H]DHEA had already been converted to its 7-hydroxylated products and the hydroxylase and aromatase systems would no longer be competing for the same coenzyme (NADPH). The hippocampal cells were still viable after 48 h of incubation with the steroids and were able to oxidize estradiol (E2) to E1 and reduce E1 to E2 and AD to testosterone (T). It is suggested that 7alpha- and 7beta-OHDHEA, the main metabolites formed in the rat hippocampus, might be responsible for some of the functions previously ascribed to estrogens in the brain and the reasons for this proposal are discussed.  相似文献   

13.
Exposure to inflammatory agents or cytokines causes the suppression of cytochrome P450 (CYP) enzyme activities and expression in liver and primary hepatocyte cultures. We showed previously that phenobarbital-induced CYP2B protein is down-regulated in primary cultures of rat hepatocytes after exposure to bacterial endotoxin (lipopolysaccharide) in a nitric oxide (NO) -dependent manner. In this study, we found that CYP2B proteins in primary rat hepatocyte cultures were suppressed >60% after 6 h of treatment with interleukin-1beta (IL-1). This effect was NO-dependent, and treatment of cells with the NO donors (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl) aminodiazen-1-ium-1,2-diolate (NOC-18), S-nitrosoglutathione, and S-nitroso-N-acetylpenicillamine also suppressed CYP2B proteins. However, the down-regulation by IL-1 was insensitive to inhibition of cGMP-dependent protein kinases. The down-regulation by IL-1 or NO donors was abolished by treatments with the proteasome inhibitors MG132 and lactacystin that did not affect NO production. The calpain inhibitor E64-d or the lysosomal protease inhibitors NH(4)Cl and chloroquine did not attenuate the down-regulation of CYP2B by IL-1. Treatment of HeLa cells expressing c-Myc-tagged CYP2B1 with NOC-18 down-regulated its expression and enhanced its ubiquitination. Treatment of rat liver microsomes with S-nitrosoglutathione caused S-nitrosylation of CYP2B protein and enhanced the ubiquitination pattern of CYP2B compared with unmodified CYP2B in an in vitro ubiquitination assay. These data are consistent with the hypothesis that NO-dependent CYP2B ubiquitination and proteasomal degradation are dependent on protein modification by reactive nitrogen species.  相似文献   

14.
15.
The current study presents data indicating that 1α,25-dihydroxyvitamin D3 affects the production of hormones and expression of crucial steroidogenic enzymes in the human adrenocortical cell line NCI-H295R. This cell line is widely used as a model for adrenal steroidogenesis. Treatment of the cells with 1α,25-dihydroxyvitamin D3 suppressed the levels of corticosterone, aldosterone, DHEA, DHEA-sulfate and androstenedione in the culture medium. In order to study the mechanisms behind this suppression of hormone production, we investigated the effects of 1α,25-dihydroxyvitamin D3 on important genes and enzymes controlling the biosynthesis of adrenal hormones. The mRNA levels were decreased for CYP21A2 while they were increased for CYP11A1 and CYP17A1. No significant changes were observed in mRNA for CYP11B1, CYP11B2 or 3β-hydroxysteroid dehydrogenase (3βHSD). In similarity with the effects on mRNA levels, also the endogenous enzyme activity of CYP21A2 decreased after treatment with 1α,25-dihydroxyvitamin D3. Interestingly, the two CYP17A1-mediated activities were influenced reciprocally — the 17α-hydroxylase activity increased whereas the 17,20-lyase activity decreased. The current data indicate that the 1α,25-dihydroxyvitamin D3-mediated decrease in corticosterone and androgen production is due to suppression of the 21-hydroxylase activity by CYP21A2 and the 17,20-lyase activity by CYP17A1, respectively. In conclusion, the current study reports novel findings on 1α,25-dihydroxyvitamin D3-mediated effects on hormone production and regulation of genes and enzymes involved in steroidogenesis in the adrenocortical NCI-H295R cell line, a model for human adrenal cortex.  相似文献   

16.
17.
Administration of dehydroepiandrosterone (DHEA) to rodents produces many unique biological responses, some of which may be due to metabolism of DHEA to more biologically active products. In the current study, DHEA metabolism was studied using human and rat liver microsomal fractions. In both species, DHEA was extensively metabolized to multiple products; formation of these products was potently inhibited in both species by miconazole, demonstrating a principal role for cytochrome P450. In the rat, use of P450 form-selective inhibitors suggested the participation of P4501A and 3A forms in DHEA metabolism. Human liver samples displayed interindividual differences in that one of five subjects metabolized DHEA to a much greater extent than the others. This difference correlated with the level of P4503A activity present in the human liver samples. For one subject, troleandomycin inhibited hepatic microsomal metabolism of DHEA by 78%, compared to 81% inhibition by miconazole, suggesting the importance of P4503A in these reactions. Form-selective inhibitors of P4502D6 and P4502E1 had a modest inhibitory effect, suggesting that these forms may also contribute to metabolism of DHEA in humans. Metabolites identified by LC-MS in both species included 16alpha-hydroxy-DHEA, 7alpha-hydroxy-DHEA, and 7-oxo-DHEA. While 16alpha-hydroxy-DHEA appeared to be the major metabolite produced in rat, the major metabolite produced in humans was a mono-hydroxylated DHEA species, whose position of hydroxylation is unknown.  相似文献   

18.
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a reproductive toxicant in multiple species; however, mechanisms and direct ovarian effects are poorly understood. DNA microarrays were used to characterize gene expression profiles of human luteinized granulosa cells (HLGCs) exposed to TCDD in primary cultures. Exposure to 10 nM TCDD for 24 h induced a significant increase in CYP1B1, while few other genes responded. TaqMan PCR and Western immunoblotting demonstrated that induction was dose-dependent. Additionally, the microsomal form of catechol-O-methyltransferase (COMT) was highly expressed in HLGCs, along with only fractional amounts of the soluble form. This is the first report of CYP1B1 and COMT expression, and CYP1B1 induction, in cells from the human ovary. The role of CYP1B1 in the oxidative metabolism of estrogens and potential generation of DNA adducts in the ovary may have significant consequences for oocyte quality, corpus luteum function, and ovarian carcinogenesis.  相似文献   

19.
20.
The dehydroepiandrosterone (DHEA) 7alpha-hydroxylation in humans takes place in the liver, skin, and brain. These organs are targets for the glucocorticoid hormones where 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisone through its reduction into cortisol. The putative interference of 7alpha-hydroxy-DHEA with the 11beta-HSD1-catalyzed reduction of cortisone into cortisol has been confirmed in preliminary works with human liver tissue preparations of the enzyme demonstrating the transformation of 7alpha-hydroxy-DHEA into 7-oxo-DHEA and 7beta-hydroxy-DHEA. However, the large production of 7beta-hydroxy-DHEA could not be explained satisfactorily. Therefore our objective was to study the role in the metabolism of oxygenated DHEA by recombinant human 11beta-HSD1 expressed in yeast. The 7alpha- and 7beta-hydroxy-DHEA were each oxidized into 7-oxo-DHEA with quite dissimilar K(M) (70 and 9.5 microM, respectively) but at equivalent V(max). In contrast, the 11beta-HSD1-mediated reduction of 7-oxo-DHEA led to the production of both 7alpha- and 7beta-hydroxy-DHEA with equivalent K(M) (1.1 microM) but with a 7beta-hydroxy-DHEA production characterized by a significantly greater V(max). The 7alpha-hydroxy-DHEA produced by the cytochrome CYP7B1 in tissues may exert anti-glucocorticoid effects through interference with the 11beta-HSD1-mediated cortisone reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号