首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbiota from multiple kingdoms (e.g., Eubacteria, Fungi, Protista) thrive at temperature optima ranging from 0–20°C (psychrophiles) to 40–85°C (thermophiles). In this study, we have monitored changes in adenylate levels and growth rate as a function of temperature in disparate thermally adapted organisms. Our data indicate that growth rate and adenylate levels increase with temperature in mesophilic and thermophilic species, but rapid losses of adenosine 5-triphosphate (ATP) occur upon cold or heat shock. By contrast, psychrophilic species decrease adenylate levels but increase growth rate as temperatures rise within their viable range. Moreover, psychrophilic ATP levels fell rapidly upon heat shock, but dramatic gains in ATP (~20–50%) were observed upon cold shock, even at sub-zero temperatures. These results suggest that energy metabolism in thermophiles resembles that in mesophiles, but that elevated adenylate nucleotides in psychrophiles may constitute a compensatory strategy for maintaining biochemical processes at low temperature.  相似文献   

2.
Obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts were cultured in a carbon-rich medium at different temperatures to investigate whether growth parameters, lipid accumulation, and fatty acid (FA) composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to a lower temperature decreased their specific growth rate, but did not affect their biomass yield (YX/S). Obligate and facultative psychrophiles exhibited the highest YX/S. Acclimation to lower temperature decreased the lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophilic ones. Similar YL/X were found in both groups of psychrophiles, suggesting that lipid accumulation is not a distinctive characteristic of adaptation to permanently cold environments. The unsaturation of FAs was one major adaptive feature of the yeasts colonizing permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expense of linoleic acid, whereas it was scarce or absent in all the other strains. Increased unsaturation of FAs was also a general acclimatory response of facultative psychrophiles to a lower temperature. These results improve the knowledge of the responses enabling psychrophilic yeasts to cope with the cold and may be of support for potential biotechnological exploitation of these strains.  相似文献   

3.
Exponentially growing cultures of mesophilic and psychrophilic yeasts were subjected to abrupt changes in temperature. Temperature shifts made within the range in which the temperature characteristic, mu, is relatively constant (moderate temperatures) immediately induced growth at the normal exponential rate for the new temperature. Prior incubation at temperatures defined as moderate enabled some yeasts to grow for a few generations at temperatures higher than their normal maximal temperature for growth. Shifts made to or from temperatures above or below those in the moderate temperature range resulted in growth rates that were intermediate between the normal steady-state rates for the initial and final temperatures. A period of transient growth rate at the new temperature outside the moderate temperature range seems to be required before normal steady-state growth rates can be attained after such temperature shifts. The psychrophiles gave transient growth rates only below 10 C, whereas the mesophiles gave transient rates below 20 C. However, the psychrophiles cannot be distinguished from the mesophiles on the basis of the temperature characteristic, mu, which was found to be about 12,000 cal/mole for both types.  相似文献   

4.

Background

Psychrophiles, cold-adapted organisms, have adapted to live at low temperatures by using a variety of mechanisms. Their enzymes are active at cold temperatures by being structurally more flexible than mesophilic enzymes. Even though, there are some indications of the possible structural mechanisms by which psychrophilic enzymes are catalytic active at cold temperatures, there is not a generalized structural property common to all psychrophilic enzymes.

Results

We examine twenty homologous enzyme pairs from psychrophiles and mesophiles to investigate flexibility as a key characteristic for cold adaptation. B-factors in protein X-ray structures are one way to measure flexibility. Comparing psychrophilic to mesophilic protein B-factors reveals that psychrophilic enzymes are more flexible in 5-turn and strand secondary structures. Enzyme cavities, identified using CASTp at various probe sizes, indicate that psychrophilic enzymes have larger average cavity sizes at probe radii of 1.4-1.5 Å, sufficient for water molecules. Furthermore, amino acid side chains lining these cavities show an increased frequency of acidic groups in psychrophilic enzymes.

Conclusions

These findings suggest that embedded water molecules may play a significant role in cavity flexibility, and therefore, overall protein flexibility. Thus, our results point to the important role enzyme flexibility plays in adaptation to cold environments.
  相似文献   

5.
温度对嗜冷酵母糖代谢途径某些关键酶的活性效应   总被引:11,自引:0,他引:11  
对嗜冷酵母Y18和酿酒酵母细胞中EMP途径和TCA循环中一些关键酶的温度特性进行了比较研究。Y18细胞中,1,6二磷酸果糖醛缩酶、琥珀酸脱氢酶和己糖激酶对温度很敏感,符合Feller提出的冷活性的概念属于冷活性酶类。柠檬酸合成酶的温度特性类似于中温酶。Α酮戊二酸脱氢酶存在不同温度特性的同功酶。通过对嗜冷酵母和中温酶母细胞中琥珀酸脱氢酶的Km值进行比较,结果显示嗜冷酵母琥珀酸脱氢酶在20℃具有较低的Km值。另外还对嗜冷菌细胞中代谢酶类的一些特点进行了讨论。  相似文献   

6.
Pathways of adenine nucleotide catabolism in primary rat muscle cultures   总被引:2,自引:0,他引:2  
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2'-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined in cell extracts. The results demonstrate that under physiological conditions, there is a small but significant flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5'-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

7.
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2′-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5′-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

8.
Growth of five strains of psychrophilic bacteria (four Arthrobacter and one Pseudomonas) isolated from glacial deposits was studied at different temperatures. Three strains were facultative psychrophiles, having an optimum temperature for growth at about 25-28 degrees C and a maximum at about 32-34 degrees C. The two Arthrobacter glacialis strains were found to be obligate psychrophiles with an optimum at 13-15 degrees C and a maximum at 18 degrees C. Arrhenius plots showed that A. glacialis could compete with the facultative psychrophilic bacteria only at 0 degrees C, that is, the temperature of its natural environment. The psychrophilic Arthrobacter species studied here are more resistant to thermal stress than are marine psychrophilic bacteria. For Arthrobacter, in contrast to Pseudomonas, temperatures above the optimum induced formation of filaments and abnormal cells. The culture turbidity increased 10 to 30 times, whereas viable count tended to decrease. The thermal block seems to prevent cell wall synthesis and septation, but at a different step for each species.  相似文献   

9.
Some like it cold: biocatalysis at low temperatures   总被引:15,自引:0,他引:15  
In the last few years, increased attention has been focused on a class of organisms called psychrophiles. These organisms, hosts of permanently cold habitats, often display metabolic fluxes more or less comparable to those exhibited by mesophilic organisms at moderate temperatures. Psychrophiles have evolved by producing, among other peculiarities, "cold-adapted" enzymes which have the properties to cope with the reduction of chemical reaction rates induced by low temperatures. Thermal compensation in these enzymes is reached, in most cases, through a high catalytic efficiency associated, however, with a low thermal stability. Thanks to recent advances provided by X-ray crystallography, structure modelling, protein engineering and biophysical studies, the adaptation strategies are beginning to be understood. The emerging picture suggests that psychrophilic enzymes are characterized by an improved flexibility of the structural components involved in the catalytic cycle, whereas other protein regions, if not implicated in catalysis, may be even more rigid than their mesophilic counterparts. Due to their attractive properties, i.e., a high specific activity and a low thermal stability, these enzymes constitute a tremendous potential for fundamental research and biotechnological applications.  相似文献   

10.
Taxonomy of Psychrophilic Strains of Bacillus   总被引:8,自引:1,他引:7  
The morphological and physiological characteristics of 20 isolates of psychrophilic Bacillus were compared with 29 strains representing nine species of mesophilic Bacillus and 2 strains of Sporosarcina ureae to determine the taxonomic position of the psychrophiles. The psychrophiles formed four distinct groups which were sufficiently different from the mesophiles to warrant their designation as new species of Bacillus. The names B. psychrosaccharolyticus, B. insolitus, B. globisporus, and B. psychrophilus are proposed for the new species.  相似文献   

11.
Three bacterial (Pedobacter heparinus, Pedobacter piscium, Pedobacter cryoconitis) and three yeast strains (Saccharomyces cerevisiae, Leucosporidiella creatinivora, Rhodotorula glacialis) of different thermal classes (mesophiles and psychrophiles) were tested for the effect of temperature on a range of growth parameters, including optical density, viable cell numbers, and cell dry mass, in order to determine the temperature conditions under which maximum biomass formation is obtained. Maximum values of growth parameters obtained at the stationary growth phase of the strains were used for statistical calculation. Temperature had a significant (≤ 0.05) effect on all growth parameters for each strain; correlations between the growth parameters were significant (≤ 0.05–0.01). The maximum growth temperature or the temperature at which microbial growth was fastest was in no case the temperature at which the investigated strains produced the highest amount of biomass. All tested psychrophilic bacteria and yeast strains produced highest amounts of cells (as calculated per mg cell dry mass or per OD600 unit) at 1°C, while cell numbers of mesophiles were highest at 20°C. Thus, cultivation temperatures close to the maximum growth temperature are not appropriate for studying psychrophiles.  相似文献   

12.
Time series studies have shown that some bacterial taxa occur only at specific times of the year while others are ubiquitous in spite of seasonal shifts in environmental variables. Here, we ask if these ubiquitous clades are generalists that grow over a wide range of environmental conditions, or clusters of strain‐level environmental specialists. To answer this question, vibrio strains isolated at a coastal time series were phylogenetically and physiologically characterized revealing three dominant strategies within the vibrio: mesophiles, psychrophiles and apparently generalist broad thermal range clades. Thermal performance curves from laboratory growth rate experiments help explain field observations of relative abundances: the mesophilic clade grows optimally at temperatures 16°C higher than the psychrophilic clade. Strains in the broad thermal range clade all have similar optimal growth temperatures but also exhibit temperature‐related tradeoffs with faster growth rates for warm temperature strains and broader growth ranges for strains from cool temperatures. Moreover, the mechanisms of thermal adaptation apparently differ based on evolutionary time scales: shifts in the temperature of maximal growth occur between deeply branching clades but thermal performance curve shape changes on shorter time scales. Thus, apparently ubiquitous clades are likely not generalists, but contain subclusters with distinct environmental preferences.  相似文献   

13.
Understanding the characteristics that define temperature-adapted enzymes has been a major goal of extremophile enzymology in recent decades. In the present study, we explore these characteristics by comparing psychrophilic, mesophilic, and thermophilic enzymes. Through a meta-analysis of existing data, we show that psychrophilic enzymes exhibit a significantly larger gap (Tg) between their optimum and melting temperatures compared with mesophilic and thermophilic enzymes. These results suggest that Tg may be a useful indicator as to whether an enzyme is psychrophilic or not and that models of psychrophilic enzyme catalysis need to account for this gap. Additionally, by using predictive protein stability software, HoTMuSiC and PoPMuSiC, we show that the deleterious nature of amino acid substitutions to protein stability increases from psychrophiles to thermophiles. How this ultimately affects the mutational tolerance and evolutionary rate of temperature adapted organisms is currently unknown.  相似文献   

14.
Alanine dehydrogenase (AlaDH: EC 1.4.1.1), malate dehydrogenase (MDH: EC 1.1.1.37), and glutamate dehydrogenase (EC 1.4.1.2), all NAD+ dependent, were detected in extracts from a psychrophilic bacterium, strain PA-43, isolated from a sea urchin off the Icelandic coast. Characterization tests suggested that the strain had a close relationship to Vibrio, but sequencing of part of the 16S rDNA gene placed the bacterium among Shewanella species in a constructed phylogenetic tree. The bacterium had an optimum growth temperature of 16.5 degrees C, and maximum dehydrogenase expression was obtained in a rich medium supplemented with NaCl. Both AlaDH and MDH were purified to homogeneity. AlaDH is a hexamer, with an approximate relative molecular mass of 260,000, whereas MDH is dimeric, with an apparent relative molecular mass of approximately 70,000. Both enzymes were thermolabile, and the optimum temperatures for activity were shifted toward lower temperatures than those found in the same enzymes from mesophiles, 37 degrees C for MDH and approximately 47 degrees C for AlaDH. The pH optima for AlaDH in the forward and reverse reactions were 10.5 and 9, respectively, whereas those for MDH were 10-10.2 and 8.8, respectively. Partial amino acid sequences, comprising approximately 30% of the total sequences from each enzyme, were determined for N-terminal, tryptic, and chymotryptic fragments of the enzymes. The AlaDH showed the highest similarity to AlaDHs from the psychrotroph Shewanella Ac10 and the mesophile Vibrio proteolyticus, whereas MDH was most similar to the MDHs from the mesophiles Escherichia coli and Haemophilus influenzae, with lower identity to the psychrophilic malate dehydrogenases from Vibrio 5710 and Photobacterium SS9.  相似文献   

15.
The uptake activity ratio for AMP, ADP, and ATP in mutant (T-1) cells of Escherichia coli W, deficient in de novo purine biosynthesis at a point between IMP and 5-aminoimidazole-4-carboxiamide-1-β-D-ribofuranoside (AICAR), was 1:0.43:0.19. This ratio was approximately equal to the 5'-nucleotidase activity ratio in E. coli W cells. The order of inhibitory effect on [2-3H]ADP uptake by T-1 cells was adenine > adenosine > AMP > ATP. About 2-fold more radioactive purine bases than purine nucleosides were detected in the cytoplasm after 5 min in an experiment with [8-1?C]AMP and T-1 cells. Uptake of [2-3H]adenosine in T-1 cells was inhibited by inosine, but not in mutant (Ad-3) cells of E. coli W, which lacked adenosine deaminase and adenylosuccinate lyase. These experiments suggest that AMP, ADP, and ATP are converted mainly to adenine and hypoxanthine via adenosine and inosine before uptake into the cytoplasm by E. coli W cells.  相似文献   

16.
Enzymes from psychrophiles catalyze the reactions at low temperatures with higher specific activity. Among all the psychrophilic enzymes produced, cold active β-galactosidase from marine psychrophiles revalorizes a new arena in numerous areas at industrial level. The hydrolysis of lactose in to glucose and galactose by cold active β-galactosidase offers a new promising approach in removal of lactose from milk to overcome the problem of lactose intolerance. Herein we propose, a 3D structure of cold active β-galactosidase enzyme sourced from Pseudoalteromonas haloplanktis by using Modeler 9v8 and best model was developed having 88% of favourable region in ramachandran plot. Modelling was followed by docking studies with the help of Auto dock 4.0 against the three substrates lactose, ONPG and PNPG. In addition, comparative docking studies were also performed for the 3D model of psychrophilic β-galactosidase with mesophilic and thermophilic enzymes. Docking studies revealed that binding affinity of enzyme towards the three different substrates is more for psychrophilic enzyme when compared with mesophilic and thermophilic enzymes. It indicates that the enzyme has high specific activity at low temperature when compared with mesophilic and thermophilic enzymes.  相似文献   

17.
Primary rat cardiomyocyte cultures were utilized as a model for the study of purine nucleotide metabolism in the heart muscle, especially in connection with the mechanisms operating for the conservation of adenine nucleotides. The cultures exhibited capacity to produce purine nucleotides from nonpurine molecules (de novo synthesis), as well as from preformed purines (salvage synthesis). The conversion of adenosine to AMP, catalyzed by adenosine kinase, appears to be the most important physiological salvage pathway of adenine nucleotide synthesis in the cardiomyocytes. The study of the metabolic fate of IMP formed from [14C]formate or [14C]hypoxanthine and that of AMP formed from [14C]adenine or [14C]adenosine revealed that in the cardiomyocyte the main flow in the nucleotide interconversion pathways is from IMP to AMP, whereas the flux from AMP to IMP appeared to be markedly slower. Following synthesis from labeled precursors by either de novo or salvage pathways, most of the radioactivity in purine nucleotides accumulated in adenine nucleotides, and only a small proportion of it resided in IMP. The results suggest that the main pathway of AMP degradation in the cardiomyocyte proceeds through adenosine rather than through IMP. About 90% of the total radioactivity in purines effluxed from the cells during de novo synthesis from [14C]formate or following prelabeling of adenine nucleotides with [14C]adenine were found to reside in hypoxanthine. The activities in cell extracts of AMP 5'-nucleotidase and IMP 5'-nucleotidase, which catalyze nucleotide degradation, and of AMP deaminase, a key enzyme in the purine nucleotide cycle, were low. The nucleotidase activity resembles, and that of the AMP deaminase contrasts the respective enzyme activities in extracts of cultured skeletal-muscle myotubes. The results indicate that in the cardiomyocyte, in contrast to the myotube, the main mechanism operating for conservation of nucleotides is prompt phosphorylation of AMP, rather than operation of the purine nucleotide cycle. The primary cardiomyocyte cultures are a plausible model for the study of purine nucleotide metabolism in the heart muscle.  相似文献   

18.
NAD(P)+-dependent aldehyde dehydrogenase (EC 1.2.1.5) and aspartase (EC 4.3.1.1) in the cells of an atypical psychrophile from Antarctic seawater, Cytophaga sp. KUC-1, were paradoxically thermostable, although they derived from a psychrophile. Both enzymes showed the highest activity at about 55 °C, and also active even under cold conditions. The enzymes contained more Ile residues than the enzymes from mesophiles. The Ile/Ile + Val + Leu ratio of the Cytophaga thermostable enzymes was much higher than that of the enzymes from mesophiles. As compared with the enzymes from other microorganisms, the Cytophaga thermostable enzymes have the structural differences in the C-terminal region of the enzymes. Therefore, the C-terminal region might be important for the paradoxical thermostability of the enzymes. The psychrophilic microorganism produces not only psychrophilic enzyme, but thermostable enzyme with psychrophilicity. Therefore, the psychrophilic microorganism is one of the candidates for isolation of novel biocatalysts, which have potential for various industrial applications.  相似文献   

19.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

20.
In soluble rat brain fraction, the specific activities of purine nucleoside phosphorylase, guanine deaminase, 5'Nucleotidase and adenosine deaminase, decrease in their mentioned order. A kinetic parameter comparison between these enzymes shows that 5'Nucleotidase with AMP has the lowest KM and the greatest Vmax values, while purine nucleoside phosphorylase has its lowest KM and its greatest Vmax values with guanosine and with inosine, respectively. The enzymes activity is not modified by the metabolic intermediates differently from their own reaction products which behave as competitive inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号