首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

2.
3.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

4.
5.
The SOS response in Escherichia coli results in the coordinately induced expression of more than 40 genes which occurs when cells are treated with DNA-damaging agents. This response is dependent on RecA (coprotease), LexA (repressor), and the presence of single-stranded DNA (ssDNA). A prerequisite for SOS induction is the formation of a RecA-ssDNA filament. Depending on the DNA substrate, the RecA-ssDNA filament is produced by either RecBCD, RecFOR, or a hybrid recombination mechanism with specific enzyme activities, including helicase, exonuclease, and RecA loading. In this study we examined the role of RecA loading activity in SOS induction after UV irradiation. We performed a genetic analysis of SOS induction in strains with a mutation which eliminates RecA loading activity in the RecBCD enzyme (recB1080 allele). We found that RecA loading activity is essential for SOS induction. In the recB1080 mutant RecQ helicase is not important, whereas RecJ nuclease slightly decreases SOS induction after UV irradiation. In addition, we found that the recB1080 mutant exhibited constitutive expression of the SOS regulon. Surprisingly, this constitutive SOS expression was dependent on the RecJ protein but not on RecFOR, implying that there is a different mechanism of RecA loading for constitutive SOS expression.  相似文献   

6.
Purification of an SOS repressor from Bacillus subtilis.   总被引:6,自引:5,他引:1       下载免费PDF全文
C M Lovett  Jr  K C Cho    T M O'Gara 《Journal of bacteriology》1993,175(21):6842-6849
We have identified in Bacillus subtilis a DNA-binding protein that is functionally analogous to the Escherichia coli LexA protein. We show that the 23-kDa B. subtilis protein binds specifically to the consensus sequence 5'-GAACN4GTTC-3' located within the putative promoter regions of four distinct B. subtilis DNA damage-inducible genes: dinA, dinB, dinC, and recA. In RecA+ strains, the protein's specific DNA binding activity was abolished following treatment with mitomycin C; the decrease in DNA binding activity after DNA damage had a half-life of about 5 min and was followed by an increase in SOS gene expression. There was no detectable decrease in DNA binding activity in B. subtilis strains deficient in RecA (recA1, recA4) or otherwise deficient in SOS induction (recM13) following mitomycin C treatment. The addition of purified B. subtilis RecA protein, activated by single-stranded DNA and dATP, abolished the specific DNA binding activity in crude extracts of RecA+ strains and strains deficient in SOS induction. We purified the B. subtilis DNA-binding protein more than 4,000-fold, using an affinity resin in which a 199-bp DNA fragment containing the dinC promoter region was coupled to cellulose. We show that B. subtilis RecA inactivates the DNA binding activity of the purified B. subtilis protein in a reaction that requires single-stranded DNA and nucleoside triphosphate. By analogy with E. coli, our results indicate that the DNA-binding protein is the repressor of the B. subtilis SOS DNA repair system.  相似文献   

7.
The SOS genes of Escherichia coli, which include many DNA repair genes, are induced by DNA damage. Although the central biochemical event in induction, activation of RecA protein through binding of single-stranded DNA and ATP to promote cleavage of the LexA repressor, is known, the cellular event that provides this activation following DNA damage has not been well understood. We provide evidence here that the major pathway of induction after damage by a typical agent, ultraviolet light, requires an active replication fork; this result supports the model that DNA replication leaves gaps where elongation stops at damage-induced lesions, and thus provides the single-stranded DNA that activates RecA protein. In order to detect quantitatively the immediate product of the inducing signal, activated RecA protein, we have designed an assay to measure the rate of disappearance of intact LexA repressor. With this assay, we have studied the early phase of the induction process. LexA cleavage is detectable within minutes after DNA damage and occurs in the absence of protein synthesis. By following the reaccumulation of LexA in the cell, we detect repair of DNA and the disappearance of the inducing signal. Using this assay, we have measured the LexA content of wild-type and various mutant cells, characterized the kinetics and conditions for development of the inducing signal after various inducing treatments and, finally, have shown the requirement for DNA replication in SOS induction by ultraviolet light.  相似文献   

8.
The activated form of the RecA protein (RecA) is known to be involved in the reactivation and mutagenesis of UV-irradiated bacteriophage lambda and in the expression of the SOS response in Escherichia coli K-12. The expression of the SOS response requires cleavage of the LexA repressor by RecA and the subsequent expression of LexA-controlled genes. The evidence presented here suggests that RecA induces the expression of a gene(s) that is not under LexA control and that is also necessary for maximal repair and mutagenesis of damaged phage. This conclusion is based on the chloramphenicol sensitivity of RecA -dependent repair and mutagenesis of damaged bacteriophage lambda in lexA(Def) hosts.  相似文献   

9.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

10.
The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light-treated cells, nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA, RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms.  相似文献   

11.
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.  相似文献   

12.
The recF143 mutant of Escherichia coli is deficient in certain functions that also require the RecA protein: cell survival after DNA damage, some pathways of genetic recombination, and induction of SOS genes and temperate bacteriophage through cleavage of the LexA and phage repressors. To characterize the role of RecF in SOS induction and RecA activation, we determined the effects of the recF143 mutation on the rate of RecA-promoted cleavage of LexA, the repressor of the SOS genes. We show that RecA activation following UV irradiation is delayed by recF143 and that RecF is specifically involved in the SOS induction pathway that requires DNA replication. At 32 degrees C, the recA441 mutation partially suppresses the defect of recF mutants in inducing the SOS system in response to UV irradiation (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. R. Volkert, L. J. Margossian, and A. J. Clark, J. Bacteriol. 160:702-705, 1984); we find that this suppression occurs at the earliest detectable phase of LexA cleavage and does not require protein synthesis. Our results support the idea that following UV irradiation, RecF enhances the activation of RecA into a form that promotes LexA cleavage (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. V. V. S. Madiraju, A. Templin, and A. J. Clark, Proc. Natl. Acad. Sci. USA 85:6592-6596, 1988). In contrast to the constitutive activation phenotype of the recA441 mutant, the recA441-mediated suppression of recF is not affected by adenine and nucleosides. We also find that wild-type RecA protein is somewhat activated by adenine in the absence of DNA damage.  相似文献   

13.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

14.
Epithelial cells are highly regarded as the first line of defense against microorganisms, but the mechanisms used to control bacterial diseases are poorly understood. A component of the DNA damage repair regulon, SulA, is essential for UPEC virulence in a mouse model for human urinary tract infection, suggesting that DNA damage is a key mediator in the primary control of pathogens within the epithelium. In this study, we examine the role of DNA damage repair regulators in the intracellular lifestyle of UPEC within superficial bladder epithelial cells. LexA and RecA coordinate various operons for repair of DNA damage due to exogenous and endogenous agents and are known regulators of sulA. UPEC strains defective in regulation of the SOS response mediated by RecA and LexA display attenuated virulence in immunocompetent mice within the first 6 h post infection. RecA and LexA regulation of the SOS regulon is dispensable in immunocompromised mice. These data suggest that epithelial cells produce sufficient levels of DNA damaging agents, such that the bacterial DNA damage repair response is essential, as a means to control invading bacteria. Since many pathogens interact with the epithelium before exposure to professional phagocytes, it is likely that adaptation to oxidative radicals during intracellular growth provides additional protection from killing by innate immune phagocytes.  相似文献   

15.
16.
The SOS regulatory system: control of its state by the level of RecA protease   总被引:38,自引:0,他引:38  
Our current understanding of the SOS regulatory system suggests that it can exist in two extreme states: in the repressed state, LexA protein is active, and it represses a particular set of genes called SOS genes. In the induced state, which results from various impairments to DNA replication, LexA repressor is cleaved by the specific protease activity of the RecA protein; in consequence, the SOS genes are derepressed and they express various functions that are believed to aid cell survival in induced cells. Since high levels of RecA protease activity turn on this system, it seems plausible that the level of protease activity will also control the transitions between the two states of the system. In order to assess the in vivo level of protease activity, antibody techniques were used to study the stability of LexA repressor during various phases of the SOS regulatory cycle. Repressor was reasonably stable in the repressed state, but it was degraded within a few minutes after an inducing treatment. Cleavage depended upon the RecA protease activity and resulted in the same products as seen in vitro. Cleavage preceded, and did not depend upon, derepression of any SOS gene. During the transition to the repressed state, LexA repressor became increasingly stable with time, suggesting that as DNA damage was repaired the level of protease declined. This decline depended upon derepression of the regulatory system, consistent with the belief that an inducing signal, resulting from DNA damage, reversibly activates the RecA protease and is removed by the action of one or more SOS functions. At low levels of DNA damage, a subinduced state was observed in which repressor level was reduced by a low level of cleavage. These data indicate that the level of RecA protease activity controls the state of the system and the transitions between its two states.  相似文献   

17.
Bacillus subtilis cells respond to double strand breaks (DSBs) with an ordered recruitment of repair proteins to the site lesion, being RecN one of the first responders. In B. subtilis, one of the responses to DSBs is to increase RecN expression rather than modifying its turnover rate. End-processing activities and the RecA protein itself contribute to increase RecN levels after DNA DSBs. RecO is required for RecA filament formation and full SOS induction, but its absence did not significantly affect RecN expression. Neither the absence of LexA nor the phosphorylation state of RecA or SsbA significantly affect RecN expression levels. These findings identify two major mechanisms (SOS and DSB response) used to respond to DSBs, with LexA required for one of them (SOS response). The DSB response, which requires end-processing and RecA or short RecO-independent RecA filaments, highlights the importance of guarding genome stability by modulating the DNA damage responses.  相似文献   

18.
Inhibition of Escherichia coli RecA coprotease activities by DinI.   总被引:2,自引:0,他引:2       下载免费PDF全文
T Yasuda  K Morimatsu  T Horii  T Nagata    H Ohmori 《The EMBO journal》1998,17(11):3207-3216
In Escherichia coli, the SOS response is induced upon DNA damage and results in the enhanced expression of a set of genes involved in DNA repair and other functions. The initial step, self-cleavage of the LexA repressor, is promoted by the RecA protein which is activated upon binding to single-stranded DNA. In this work, induction of the SOS response by the addition of mitomycin C was found to be prevented by overexpression of the dinI gene. dinI is an SOS gene which maps at 24.6 min of the E.coli chromosome and encodes a small protein of 81 amino acids. Immunoblotting analysis with anti-LexA antibodies revealed that LexA did not undergo cleavage in dinI-overexpressed cells after UV irradiation. In addition, the RecA-dependent conversion of UmuD to UmuD' (the active form for mutagenesis) was also inhibited in dinI-overexpressed cells. Conversely, a dinI-deficient mutant showed a slightly faster and more extensive processing of UmuD and hence higher mutability than the wild-type. Finally, we demonstrated, by using an in vitro reaction with purified proteins, that DinI directly inhibits the ability of RecA to mediate self-cleavage of UmuD.  相似文献   

19.
The LexA protein of Escherichia coli represses expression of a variety of genes that, by definition, constitute the SOS regulon. Genetic evidence suggests that Tn5 transposition is also regulated by the product of the lexA gene (C.-T. Kuan, S.-K. Liu, and I. Tessman, Genetics 128:45-57, 1991). We now show that the LexA protein represses expression of the tnp gene, located in the IS50R component of Tn5, which encodes a transposase, and that LexA does not repress expression of the IS50R inh gene, which encodes an inhibitor of transposition. Elimination of LexA resulted in increased expression of the tnp gene by a factor of 2.7 +/- 0.4, as indicated by the activity of a lacZ gene fused to the tnp gene. LexA protein retarded the electrophoretic movement of a 101-bp segment of IS50R DNA that contained a putative LexA protein-binding site in the tnp promoter; the interaction between the LexA repressor and the promoter region of the tnp gene appears to be relatively weak. These features show that the IS50R tnp gene is a member of the SOS regulon.  相似文献   

20.
Y Cao  R R Rowland    T Kogoma 《Journal of bacteriology》1993,175(22):7247-7253
In Escherichia coli rnhA mutants, several normally repressed origins (oriK sites) of DNA replication are activated. The type of DNA replication initiated from these origins, termed constitutive stable DNA replication, does not require DnaA protein or the oriC site, which are essential for normal DNA replication. It requires active RecA protein. We previously found that the lexA71(Def)::Tn5 mutation can suppress this RecA requirement and postulated that the derepression of a LexA regulon gene(s) leads to the activation of a bypass pathway, Rip (for RecA-independent process). In this study, we isolated a miniTn10spc insertion mutant that abolishes the ability of the lexA(Def) mutation to suppress the RecA requirement of constitutive stable DNA replication. Cloning and DNA sequencing analysis of the mutant revealed that the insertion occurs at the 3' end of the coding region of the polA gene, which encodes DNA polymerase I. The mutant allele, designated polA25::miniTn10spc, is expected to abolish the polymerization activity but not the 5'-->3' or 3'-->5' exonuclease activity. Thus, the Rip bypass pathway requires active DNA polymerase I. Since the lethal combination of recA(Def) and polA25::miniTn10spc could be suppressed by derepression of the LexA regulon only when DNA replication is driven by the oriC system, it was suggested that the bypass pathway has a specific requirement for DNA polymerase I at the initiation step in the absence of RecA. An accompanying paper (Y. Cao and T. Kogoma, J. Bacteriol. 175:7254-7259, 1993) describes experiments to determine which activities of DNA polymerase I are required at the initiation step and discusses possible roles for DNA polymerase in the Rip bypass pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号