首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The age on onset of decline in renal function and end-stage renal disease (ESRD) in autosomal polycystic kidney disease (ADPKD) is highly variable and there are currently no prognostic tools to identify patients who will progress rapidly to ESRD. In ADPKD, expansion of cysts and loss of renal function are associated with progressive fibrosis. Similar to the correlation between tubulointerstitial fibrosis and progression of chronic kidney disease (CKD), in ADPKD, fibrosis has been identified as the most significant manifestation associated with an increased rate of progression to ESRD. Fibrosis in CKD has been studied extensively. In contrast, little is known about the mechanisms underlying progressive scarring in ADPKD although some commonality may be anticipated. Current data suggest that fibrosis associated with ADPKD shares at least some of the “classical” features of fibrosis in CKD (increased interstitial collagens, changes in matrix metalloproteinases (MMPs), over-expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), over-expression of plasminogen activator inhibitor-1 (PAI-1) and increased transforming growth factor beta (TGFβ) but that there are also some unique and stage-specific features. Epithelial changes appear to precede and to drive interstitial changes leading to the proposal that development of fibrosis in ADPKD is biphasic with alterations in cystic epithelia precipitating changes in interstitial fibroblasts and that reciprocal interactions between these cell types drives progressive accumulation of extracellular matrix (ECM). Since fibrosis is a major component of ADPKD it follows that preventing or slowing fibrosis should retard disease progression with obvious therapeutic benefits. The development of effective anti-fibrotic strategies in ADPKD is dependent on understanding the precise mechanisms underlying initiation and progression of fibrosis in ADPKD and the role of the intrinsic genetic defect in these processes. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

2.
Acute kidney injury (AKI) is an underestimated, yet important risk factor for development of chronic kidney disease (CKD). Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD). Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis) is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care) with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data.  相似文献   

3.
随着糖尿病发病率逐年升高,糖尿病肾病成为导致慢性肾脏疾病和终末期肾脏疾病的主要原因。而目前控制血糖及抑制肾素-血管紧张素系统的药物治疗,并不能有效防止糖尿病肾病进展。近年来发现,慢性低水平炎症和免疫系统激活在糖尿病性肾病的发生及发展中起着至关重要的作用。明确糖尿病肾病进展中的炎症机制将有助于确定新的潜在靶点及研发抗炎治疗策略。越来越多的证据表明,中药治疗可以有效改善糖尿病性肾病的高血糖和蛋白尿,并能延缓其进展成为终末期肾病。糖尿病肾病动物实验和体外研究证实中药复方、中草药提取物和中药单体具有调节炎症介质的作用。本文旨在归纳总结文献中与糖尿病肾病肾损伤相关的炎症分子和途径,并探讨中草药靶向抗炎治疗糖尿病肾病的作用。  相似文献   

4.
Emerging evidence supports the pivotal role of renal microvascular disease as a determinant of tubulo-interstitial and glomerular fibrosis in chronic kidney disease. An intact microcirculation is vital to restore blood flow to the injured tissues, which is a crucial step to achieve a successful repair response. The purpose of this review is to discuss the impact and mechanisms of the functional and structural changes of the renal microvascular network, as well as the role of these changes in the progression and irreversibility of renal injury. Damage of the renal microcirculation and deterioration of the angiogenic response may constitute early steps in the complex pathways involved in progressive renal injury. There is limited but provocative evidence that stimulation of vascular proliferation and repair may stabilize renal function and slow the progression of renal disease. The feasibility of novel potential therapeutic interventions for stabilizing the renal microvasculature is also discussed. Targeted interventions to enhance endogenous renoprotective mechanisms focused on the microcirculation, such as cell-based therapy or the use of angiogenic cytokines have shown promising results in some experimental and clinical settings.  相似文献   

5.
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation.In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.  相似文献   

6.
Renal tubulo-interstitial fibrosis is a non-specific process, representing the final common pathway for all kidney diseases, irrespective of their initial cause, histological injury, or etiology, leading to gradual expansion of the fibrotic mass which destroys the normal structure of the tissue and results in organ dysfunction and, ultimately, in end-stage organ failure. Proteomic studies of the fibrotic pathophysiological mechanisms have been performed in cell cultures, animal models and human tissues, addressing some of the key issues. This article will review proteomic contribution to the raising current knowledge on renal fibrosis biology and also mention seminal open questions to which proteomic techniques and proteomists could fruitfully contribute.  相似文献   

7.
Excessive extracellular matrix deposition and pathological vascularization are characteristics of fibrosis, which compromises the normal functioning of organs. Although whether angiogenesis can be induced and can occur in parallel with the progression of fibrosis has not been definitely determined, angiogenesis undoubtedly plays a vital role in fibrosis. Since vascular endothelial growth factor (VEGF) is one of the most effective proangiogenic factors, VEGF-targeting interventions have been a focus for the development of therapeutic strategies against fibrosis. In this review, we will summarize the current knowledge of the role of VEGF and its relevant mechanisms in fibrotic biology. We especially expect to provide a comprehensive overview of the therapeutic potential of VEGF-targeted therapy strategies to restore vascular function in the organs affected by fibrosis.  相似文献   

8.
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.  相似文献   

9.
Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.  相似文献   

10.
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of excellent glucose and blood pressure control, including administration of angiotensin converting enzyme inhibitors and/or angiotensin II receptor blockers, diabetic nephropathy still develops and progresses. The development of additional protective therapeutic interventions is, therefore, a major priority. Nuclear hormone receptors regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of metabolic diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Several nuclear receptor activating ligands (agonists) have been shown to have a renal protective effect in the context of diabetic nephropathy. This review will discuss the evidence regarding the beneficial effects of the activation of several nuclear, especially the vitamin D receptor (VDR), farnesoid X receptor (FXR), and peroxisome-proliferator-associated receptors (PPARs) in preventing the progression of diabetic nephropathy and describe how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

11.
12.
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.  相似文献   

13.
Proteomics was initially viewed as a promising new scientific discipline to study complex disorders such as polygenic, infectious and environment-related diseases. However, the first attempts to understand a monogenic disease such as cystic fibrosis (CF) by proteomics-based approaches have proved quite rewarding. In CF, the impairment of a unique protein, the CF transmembrane conductance regulator, does not completely explain the complex and variable CF clinical phenotype. The great advances in our knowledge about the molecular and cellular consequences of such impairment have not been sufficient to be translated into effective treatments, and CF patients are still dying due to chronic progressive lung dysfunction. The progression of proteomics application in CF will certainly unravel new proteins that could be useful as biomarkers either to elucidate CF basic mechanisms and to better monitor the disease progression, or to promote the development of novel therapeutic strategies against CF. This review will summarize the recent technological advances in proteomics and the first results of its application to address the most important issues in the CF field.  相似文献   

14.
Non-alcoholic steatohepatitis (NASH), a cause of cirrhosis and hepatocellular carcinoma, is characterized by fatty infiltration of the liver, inflammation, hepatocellular damage and fibrosis. Progress has been made in understanding the molecular and cellular mechanisms implicated in the pathogenesis of this condition, therefore, we here review recent developments regarding the basic mechanisms of NASH development. Accumulation of triglycerides in the hepatocytes is the result of increased inflow of free fatty acids and de novo lipogenesis. Steatosis leads to lipotoxicity, which causes apoptosis, necrosis, generation of oxidative stress and inflammation. The resulting chronic injury activates a fibrogenic response that leads eventually to end-stage liver disease. A better understanding of these mechanisms is crucial for the design of novel diagnostic and therapeutic strategies.  相似文献   

15.
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome.  相似文献   

16.
It is clear that the well-described phenomenon of epithelial–mesenchymal transition (EMT) plays a pivotal role in embryonic development, wound healing, tissue regeneration, organ fibrosis and cancer progression. EMTs have been classified into three subtypes based on the functional consequences and biomarker context in which they are encountered. This review will highlight findings on type II EMT as a direct contributor to the kidney myofibroblast population in the development of renal fibrosis, specifically in diabetic nephropathy, the signalling molecules and the pathways involved in type II EMT and changes in the expression of specific miRNA with the EMT process. These findings have provided new insights into the activation and development of EMT during disease processes and may lead to possible therapeutic interventions to suppress EMTs and potentially reverse organ fibrosis.  相似文献   

17.
急性肾损伤(Acute kidney injury, AKI)是一个日益严重的全球性健康问题,然而目前尚无预防AKI或促进AKI恢复的有效的治疗方法,寻找促进肾小管修复、阻止肾纤维化进展的有效治疗靶点与策略已迫在眉睫。巨噬细胞是具有吞噬功能的重要固有免疫细胞,具有高度的起源异质性和功能异质性,在组织发育与稳态、宿主防御、组织损伤与修复以及纤维化等多种生理病理过程中扮演着复杂的角色。特别的,在AKI损伤与修复的不同阶段巨噬细胞发生动态变化并呈现高度多样性。本文就巨噬细胞在肾损伤及修复过程中作用及机制的研究进展作一综述,以期为寻找AKI治疗靶点、制定AKI治疗策略提供新的思路。  相似文献   

18.
Progressive renal tubulointerstitial fibrosis is a common final pathway of nearly all forms of chronic kidney disease. Many efforts have been done to arrest or prevent renal tubulointerstitial fibrosis but with little progress. Nowadays, few therapeutic agents are available in clinical use. Norcantharidin (NCTD) is of great benefit in anticancer treatment, by inducing cell apoptosis, inhibiting cell proliferation, in addition, blocking tumor metastasis and angiogenesis in cancer, whereas little attention is given to its relationship with other diseases. Our recent studies demonstrated that NCTD was protective against renal tubulointerstitial fibrosis both in vivo and in vitro. The underlying mechanisms may include modulation of TGF-β1/Smad signal cascade, inhibition of protein serine/threonine phosphatases (PPP) as well as NF-κB. NCTD may be a promising therapeutic agent for renal tubulointerstitial fibrosis. In the present article, we will review the action of NCTD in renal tubulointerstitial fibrosis and discuss its possible mechanisms.  相似文献   

19.
20.
慢性肾脏疾病患者的肾功能会随时间的推移而进行性恶化,肾实质细胞进行性丧失及细胞外基质蛋白过度沉积将导致肾纤维化形成,肾纤维化进行性发展将最终走向终末期肾衰竭。肝细胞生长因子(HGF)及其受体c-Met对肾发育和急性肾损伤后的肾脏再生修复具有重要作用,在慢性肾衰竭及肾纤维化时,HGF还具有营养肾脏及抗肾纤维化的作用。简要综述了HGF抑制肾纤维化形成的细胞分子机制的研究进展,提示HGF在治疗肾纤维化方面所具有的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号