首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J H Parkes  P A Liebman 《Biochemistry》1984,23(21):5054-5061
The kinetics of the relaxation of bleached bovine rod disk membrane suspensions from metarhodopsin I into the equilibrium between metarhodopsins I and II were determined at pHs between 5.9 and 8.1 and at temperatures between -1 and 15 degrees C. From these data, thermodynamic equations were generated by two-way linear regression that simultaneously describe the functional dependence on pH and temperature of the pseudo-first-order and true forward rate constants, the reverse and observed rate constants, and the equilibrium constant. Using these equations, we obtained the thermodynamic parameters and the apparent net proton uptake for the transitions from metarhodopsin I to metarhodopsin II and from metarhodopsin I to the activated intermediate. The reversibility of this equilibrium and the effect of aging of the preparation on the measured rate constants were investigated.  相似文献   

2.
The thermal activation barrier of guanosine triphosphate dependent dissociation of the light-induced rhodopsin-G-protein complex has been determined using a spectroscopic technique (enhanced formation of metarhodopsin II). The dissociation rate has been measured in the range - 2 degrees C less than or equal to t less than or equal to 12 degrees C. The Arrhenius plot yields apparent activation energies: 166 +/- 10 kJmol-1 with 5'-guanylylimidodiphosphate (GMPPNP) and 175 +/- 15 kJmol-1 with GTP. The rhodopsin-G-protein dissociation rate is linearly related to the concentration of GMPPNP in the measurable range (less than or equal to 200 microM). The data show that, at low temperature (1 degree C), the rate limiting step of G-protein activation is the bimolecular reaction between the protein and the nucleotide. This also seems to hold true for more physiological conditions as suggested by extrapolation and comparison with nucleotide exchange rates in the literature. The high activation barrier of the nucleotide exchange reaction is explained in terms of rapid endothermic preequilibrium between an inactive and an exchanging state of the rhodopsin-G-protein complex.  相似文献   

3.
4.
Cap binding protein (CBP)-related polypeptides were identified in different cytoplasmic RNP particles of embryonic chick muscles using monoclonal antibody to purified CBP. A single immunoreactive peptide (Mr 78000) was present in preparations of both free mRNP particles and a novel 10 S translation inhibitory RNP particle. In contrast, proteins isolated from these particles showed two new low-Mr immunoreactive peptides (Mr 43000 and Mr 29000). No CBP related protein could be detected in polysomal mRNP, although an immunoreactive Mr 43000 CBP-related protein was present in polysomes. The relevance of the association of different CBP-related polypeptides with cytoplasmic RNP particles and polysomes are discussed.  相似文献   

5.
The superfamily of membrane-bound receptors, which function in signal transduction by activating a guanine nucleotide binding protein or G-protein in response to agonist binding, shares a number of structural and mechanistic properties. Among these similarities is downregulation of functional activity via receptor phosphorylation. In this study, the effects of intermediate levels of phosphorylation (greater than or equal to 4 added phosphates per receptor molecule) on receptor conformational equilibria are examined by comparing the photochemical properties of phosphorylated and unphosphorylated rhodopsins which were incorporated separately into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine vesicles. Postflash spectra reflecting the contributions of metarhodopsins I, II, and III (meta I, meta II, and meta III) were obtained from these samples. Deconvolution of appropriate difference spectra allowed a determination of the concentration of the photointermediates of interest. Meta II is the form of photolyzed rhodopsin which binds and activates the visual G-protein (Gt); thus, its relative abundance at equilibrium and temporal stability are important parameters in determining the efficiency of visual signal transduction. The effects of pH and temperature on the meta I in equilibrium with meta II equilibrium constant (Keq) and the rate of decay of meta II to meta III were examined for the reconstituted phosphorylated and unphosphorylated rhodopsin samples. Keq was essentially unaffected by phosphorylation when measured at pH 7.0 and 8.0 and 20 and 37 degrees C. The decay time (lifetime) of meta II----meta III had a value of approximately 4.7 min in both phosphorylated and unphosphorylated samples.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The decay of metarhodopsin II, the formation of metarhodopsin III and the associated protonation changes are studied using suspensions of cattle rod outer segment membranes. The results suggest that metarhodopsin III is in equilibrium with the late unprotonate form of metarhodopsin II (M'II) which we have previously described.  相似文献   

8.
Previous indirect observations have indicated that IgG may change its conformation at low or high pH and at a temperature of about 35 degrees C. By means of small angle neutron scattering a change in the value of the gyration radius of two different native IgG's was observed above 44 degrees C. No similar change was detected when the sample was previously dissolved in an acidic buffer. The acidic pretreatment caused a significant decrease in the gyration radius (Rg) value measured at 20 degrees C which was partially recovered by increasing the temperature. These observations led to the assumption that the main conformational change observed appears either in the hinge region of the molecular or in the interdomain areas separating the constant and the variable domains of the Fab parts.  相似文献   

9.
The decay reactions of metarhodopsin II and the dissociation of the complex between rhodopsin (in the metarhodopsin II state) and the GTP-binding protein (G-protein) (in its inactive, GDP-binding form) have been compared at various concentrations of hydroxylamine. The reactions of the chromophore were measured by absorption changes in the visible range, the complex dissociation by changes in the near-in-frared scattering. An additional monitor of the complex was given by the G-protein-dependent equilibrium between metarhodopsin I and metarhodopsin II. For all measurements, fragments of isolated bovine rod outer segments in suspension were used. In the absence of hydroxylamine, the rhodopsin-G-protein complex dissociated within 20–30 min at room temperature. The presence of hydroxylamine greatly accelerated (e.g., 5-fold at 1 mM NH2OH) the dissociation. Under all conditions, the free, dissociated G-protein can reassociate to metarhodopsin II produced by subsequent bleaching. Dissociation of the metarhodopsin II-G-protein complex required the decay of photoproducts with a maximal absorbance of 380 nm, but was not affected by the simultaneous presence of metarhodopsin III or metarhodopsin III — like photoproducts with a maximal absorbance between 450 and 470 nm. Despite the acceleration of metarhodopsin II-G-protein dissociation by NH2OH, metarhodopsin II-G-protein was relatively stabilized as compared to free metarhodopsin II. The ratio of the decay rates of free metarhodopsin II and metarhodopsin III-G-protein was increased as much as 10-fold in the presence of 25 mM NH2OH. The results indicate a mutual interdependence of retinal, opsin and G-protein.  相似文献   

10.
A rapid birefringence loss associated with metarhodopsin II formation, delta (delta n) MII, is produced when frog rod outer segments are exposed to a bleaching light flash. To analyze the nature of the underlying structure change, measurements of delta (delta n) MII were made in rod outer segments perfused with glycerol solutions to increase the refractive index of the cytoplasmic and intradisk spaces. Comparisons of experimental results with computed changes in the form birefringence component using two- and three-dielectric outer segment models for several putative structure changes were made. It is concluded that delta (delta n) MII can be due to either a change in the intrinsic birefringence component caused by the reorientation of anisotropic molecules, or to a change in the form birefringence component caused by small changes in the cytoplasmic and/or intradisk volumes.  相似文献   

11.
12.
The binding characteristics of the inhibitor of anion transport in human red cells, 4,4'-dibenzamido-2,2'-disulfonic stilbene (DBDS), to the anion transport protein of red cell ghost membranes in buffer containing 150 mM NaCl have been measured over the temperature range 0-30 degrees C by equilibrium and stopped-flow fluorescence methods. The equilibrium dissociation constant Keq, increased with temperature. No evidence of a 'break' in the ln(Keq) vs. 1/T plot was found. The standard dissociation enthalpy and entropy changes calculated from the temperature dependence are 9.1 +/- 0.9 kcal/mol and 3.2 +/- 0.3 e.u., respectively. Stopped-flow kinetic studies resolve the overall binding into two steps: a bimolecular association of DBDS with the anion transport protein, followed by a unimolecular rearrangement of the DBDS-protein complex. The rate constants for the individual steps in the binding mechanism can be determined from an analysis of the concentration dependence of the binding time course. Arrhenius plots of the rate constants showed no evidence of a break. Activation energies for the individual steps in the binding mechanism are 11.6 +/- 0.9 kcal/mol (bimolecular, forward step), 17 +/- 2 kcal/mol (bimolecular, reverse step), 6.4 +/- 2.3 kcal/mol (unimolecular, forward step), and 10.6 +/- 1.9 kcal/mol (unimolecular, reverse step). Our results indicate that there is an appreciable enthalpic energy barrier for the bimolecular association of DBDS with the transport protein, and appreciable enthalpic and entropic barriers for the unimolecular rearrangement of the DBDS-protein complex.  相似文献   

13.
Photolyzed rhodopsin (R) catalyzes GTP-binding to alpha-transducins (T alpha); T alpha X GTPs then activate cGMP phosphodiesterase (PDE). PDE activation is arrested by ATP in two ways: (i) initial velocity is suppressed, and (ii) PDE velocity rapidly returns to preactivation levels (turnoff). Arrestin (a 48 kDa protein) markedly enhances turnoff while not affecting initial velocity. Arrestin in the presence of ATP achieves rapid turnoff by directly inhibiting activated PDE, as indicated by its ability to inhibit the direct activation of PDE by T alpha X GMP--PNP (guanylyl-imidodiphosphate). Double reciprocal plots reveal a competition between arrestins and activated transducins for sites on PDE. Blocking R phosphorylation blocks initial velocity suppression but does not disturb rapid turnoff. Our data suggest a 2-fold mechanism for PDE deactivation: (i) formation of T alpha X GTPs is suppressed by R phosphorylation, while (ii) activation of PDE by T alpha X GTPs is competitively inhibited by arrestins when ATP is present.  相似文献   

14.
A Caretta  P J Stein 《Biochemistry》1986,25(9):2335-2341
Under conditions in which large guanosine cyclic 3',5'-phosphate (cGMP)- and phosphodiesterase (PDE)-dependent changes in near-infrared transmission and vesicle aggregation and disaggregation occur, we have observed a striking change in the binding of PDE to rod disk membranes. The change in PDE binding is nucleotide and light dependent as are the light-scattering changes. The cGMP- and PDE-dependent light-scattering signal can be produced by a 500-nm light flash which bleaches 1/(1 X 10(7] rhodopsin molecules. Mg ions are an essential cofactor for the nucleotide-dependent PDE binding and light-scattering changes. 3-Isobutyl-1-methylxanthine and other competitive inhibitors of PDE hydrolytic activity support increased PDE binding to the disk membrane, vesicle aggregation, and the light-scattering signal. However, treatments which block GTP-dependent activation of PDE hydrolytic activity (colchicine, GDP, or ethylenediaminetetraacetic acid) also block these phenomena. Thus, GTP-dependent activation of PDE rather than its hydrolytic activity appears to be correlated with the light-scattering signal.  相似文献   

15.
We have used the membrane-permeant charged fluorescent dye, 3,3'-dipropylthiadicarbocyanine iodide (diS-C3[5]), to monitor electrical potentials across the membranes of isolated bovine disks. Calibration curves obtained from experiments where a potential was created across the disk membrane by a potassium concentration gradient and valinomycin showed an approximately linear relation between dye fluorescence and calculated membrane potential from 0 to -120 mV. Light exposure in the presence of the permeant buffer, imidazole, caused a rapid decay of the membrane potential to a new stable level. Addition of CCCP, a proton ionophore, in the dark produced the same effect as illumination. When the permeant buffer, imidazole, was replaced by the impermeant buffer, Hepes, neither light nor CCCP discharged the gradient. We interpret the changes in membrane potential measured upon illumination to be the result of a light-induced increase in the permeability of the disk membrane to protons. A permeant buffer is required to prevent the build-up of a pH gradient which would inhibit the sustained proton flow needed for an observable change in membrane potential.  相似文献   

16.
The outer segment portion of photoreceptor rod cells is composed of a stacked array of disk membranes. Newly formed disks are found at the base of the rod outer segment (ROS) and are relatively high in membrane cholesterol. Older disks are found at the apical tip of the ROS and are low in membrane cholesterol. Disk membranes were separated based on their membrane cholesterol content and the extent of membrane protein phosphorylation determined. Light induced phosphorylation of ROS disk membrane proteins was investigated using magic angle spinning31P NMR. When intact rod outer segment preparations were stimulated by light, in the presence of endogenously available kinases, membrane proteins located in disks at the base of the ROS were more heavily phosphorylated than those at the tip. SDS-gel electrophoresis of the phosphorylated disk membranes subpopulations identified a phosphoprotein species with a molecular weight of approximately 68–72 kDa that was more heavily phosphorylated in newly formed disks than in old disks. The identity of this phosphoprotein is presently under investigation. When the phosphorylation reaction was carried out in isolated disk membrane preparations with exogenously added co-factors and kinases, there was no preferential protein phosphorylation. Taken collectively, these results suggest that within the ROS there is a protein phosphorylation gradient that maybe indicative of co-factor or kinase heterogeneity.  相似文献   

17.
S C Liu  G Fairbanks  J Palek 《Biochemistry》1977,16(18):4066-4074
Changes in pH significantly affect the morphology and physical properties of red cell membranes. We have explored the molecular basis for these phenomena by characterizing the pattern of protein disulfide cross-linkages formed spontaneously in ghost exposed to acid pH or elevated temperature (37 degrees C). Protein aggregation was analyzed by two-dimensional polyacrylamide gel electrophoresis in sodium dodecyl sulfate. incubation of ghosts at pH 4.0 to 5.5 (0-4 degrees C) yielded (i) complexes of spectrin and band 3, (ii) complexes of actin and band 3, (iii) band 3 complexes, i.e. dimer and trimer, and (iv) heterogeneous aggregates involving spectrin, band 3, band 4.2, and actin in varying proportions. Aggregation was maximal near the isoelectric points of the major membrane proteins, and appeared to reflect (i) the aggregation of intramembrane particles including band 3 and (ii) more intimate contact between spectrin-actin meshwork and band 3.  相似文献   

18.
19.
Khare D  Alexander P  Orban J 《Biochemistry》1999,38(13):3918-3925
Protium-deuterium fractionation factors (phi) were determined for more than 85% of the backbone amide protons in the IgG binding domains of protein G, GB1 and GB2, from NMR spectra recorded over a range of H2O/D2O solvent ratios. Previous studies suggest a correlation between phi and hydrogen bond strength; amide and hydroxyl groups in strong hydrogen bonds accumulate protium (phi < 1), while weak hydrogen bonds accumulate deuterium (phi > 1). Our results show that the alpha-helical residues have slightly lower phi values (1.03 +/- 0.05) than beta-sheet residues (1.12 +/- 0.07), on average. The lowest phi value obtained (0.65) does not involve a backbone amide but rather is for the interaction between two side chains, Y45 and D47. Fractionation factors for solvent-exposed residues are between the alpha-helix and beta-sheet values, on average, and are close to those for random coil peptides. Further, the difference in phiav between alpha-helix and solvent-exposed residues is small, suggesting that differences in hydrogen bond strength for intrachain hydrogen bonds and amide...water hydrogen bonds are also small. Overall, the enrichment for deuterium suggests that most backbone...backbone hydrogen bonds are weak.  相似文献   

20.
The correlation between the absorption spectral changes and the increase in protein fluorescence after short illumination of suspensions of bovine photoreceptor disk membrane fragments was investigated. A comparison of the kinetics of the thermal formation of rhodopsin photoproducts with those of the increase in fluorescence indicates a close correspondence between the thermal formation of metarhodopsin III465 and the light-induced fluorescence increase. This result suggests that a conformational change, probably involving a decrease in the polarity of the environment of tryptophan residues, occurs in association with the formation of metarhodopsin III465.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号