首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
制浆造纸生物技术研究进展   总被引:17,自引:0,他引:17  
制浆造纸工业是国民经济的主要支柱之一,但也是资源消耗和环境污染的大户。近年来,国外用于制浆造纸工业的生物技术研究异常活跃,除废水生物处理外,木聚糖酶助漂、脂肪酶控制树脂、木片真菌预处理和酶法废纸脱墨等工艺已经在生产中得到实际应用,生物制浆、漆酶漂白工艺也已进入中试阶段。结合以草浆为主的特点,我国的制浆造纸生物技术研究也已日趋活跃起来。  相似文献   

2.
Enzymes are versatile catalysts with a growing number of applications in biotechnology. Their properties render them also attractive for waste/pollutant treatment processes and their use might be advantageous over conventional treatments. This review highlights enzymes that are suitable for waste treatment, with a focus on cell-free applications or processes with extracellular and immobilized enzymes. Biological wastes are treated with hydrolases, primarily to degrade biological polymers in a pre-treatment step. Oxidoreductases and lyases are used to biotransform specific pollutants of various nature. Examples from pulp and paper, textile, food and beverage as well as water and chemical industries illustrate the state of the art of enzymatic pollution treatment. Research directions in enzyme technology and their importance for future development in environmental biotechnology are elaborated. Beside biological and biochemical approaches, i.e. enzyme prospection and the design of enzymes, the review also covers efforts in adjacent research fields such as insolubilization of enzymes, reactor design and the use of additives. The effectiveness of enzymatic processes, especially when combined with established technologies, is evident. However, only a limited number of enzymatic field applications exist. Factors like cost and stability of biocatalysts need to be addressed and the collaboration and exchange between academia and industry should be further strengthened to achieve the goal of sustainability.  相似文献   

3.
Efficient use of shrimp waste: present and future trends   总被引:2,自引:0,他引:2  
The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.  相似文献   

4.
生物技术以其能在常温常压下将污染物降解为无毒无害的简单物质、无二次污染、运行费用低等优点,目前已应用于许多废气处理,并已经形成了一套关于可生化气体的净化原理和工业应用经验的重要体系。文中介绍了生物技术处理污水处理厂、养殖场排放的恶臭气体、工厂排放的硫化物的发展,并分析了解决生物膜堵塞的途径,以及分子生物学在废气生物处理中的应用研究,提出生物净化废气技术的发展方向,期待该技术在国内能得到更广泛的应用。  相似文献   

5.
生物净化废气技术的进展   总被引:2,自引:0,他引:2  
生物技术以其能在常温常压下将污染物降解为无毒无害的简单物质、无二次污染、运行费用低等优点,目前已应用于许多废气处理,并已经形成了一套关于可生化气体的净化原理和工业应用经验的重要体系。文中介绍了生物技术处理污水处理厂、养殖场排放的恶臭气体、工厂排放的硫化物的发展,并分析了解决生物膜堵塞的途径,以及分子生物学在废气生物处理中的应用研究,提出生物净化废气技术的发展方向,期待该技术在国内能得到更广泛的应用。  相似文献   

6.
Sawdust, a bulky waste generated by wood processing industries, has very few profitable and ecofriendly uses and poses a problem of proper disposal. Treatment with the fungusVolvariella volvaceae and a dilute solution of urea converted sawdust from a phytoinhibitory material to a phytostimulatory soil conditioner. In different types of soils, the soil conditioner increased the moisture retention and facilitated the cohesive interaction of particles. Analyses of the major biopolymers of sawdust after fungal treatment indicated that levels of cellulose, hemicellulose and lignin decreased; however, these changes did not account for the plant growth stimulatory property attained by this material.  相似文献   

7.
Industrial biotechnology involves the use of enzymes and microorganisms to produce value-added chemicals from renewable sources. Because of its association with reduced energy consumption, greenhouse gas emissions, and waste generation, industrial biotechnology is a rapidly growing field. Here we highlight a variety of important tools for industrial biotechnology, including protein engineering, metabolic engineering, synthetic biology, systems biology, and downstream processing. In addition, we show how these tools have been successfully applied in several case studies, including the production of 1, 3-propanediol, lactic acid, and biofuels. It is expected that industrial biotechnology will be increasingly adopted by chemical, pharmaceutical, food, and agricultural industries.  相似文献   

8.
Mixed culture biotechnology for bioenergy production   总被引:6,自引:0,他引:6  
Mixed culture biotechnology (MCB) could become an attractive addition or alternative to traditional pure culture based biotechnology for the production of chemicals and/or bioenergy. On the basis of ecological selection principles, MCB-based processes can be established that generate a narrow product spectrum from a mixed substrate. Three example processes are briefly discussed in this paper: anaerobic digestion aimed at the production of methane-containing biogas, mixed culture fermentation for the production of solvents or biohydrogen, and a two-step process for the production of polyhydroxyalkanoates. These examples give an idea of the potential contribution of mixed culture biotechnology to sustainable production of bioenergy from waste.  相似文献   

9.
There are numerous possibilities for replacing chemical techniques with biotechnological methods based on renewable resources. The potential of biotechnology (products, technologies, metabolic pathways) is for the most part well known. Often the costs are still the problem. Biotechnological advances have the best chances for replacing some fine chemicals. While the raw material costs are less of a consideration here, the environmental benefit is huge, as chemical-technical processes often produce a wide range of undesirable/harmful by-products or waste. In the case of bulk chemicals (<US $1/kg) the product price is affected mainly by raw material costs. As long as fossil raw materials are still relatively inexpensive, alternatives based on renewable resources cannot establish themselves. Residues and waste, which are available even at no cost in some cases, are an exception. The introduction of new technologies for the efficient use of such raw materials is currently being promoted. The utilisation of residual wood, plant parts, waste fat, and crude glycerol, for example, provides great potential. For industrial chemicals (US $2–4/kg), process and recovery costs play a greater role. Here, innovative production technologies and product recovery techniques (e.g. on-line product separation) can increase competitiveness.  相似文献   

10.
Over the past decade much effort has been made to develop new carrier materials, more performant biocatalysts, and new types of bioreactors for waste gas treatment. In biofilters fungal biocatalysts are more resistant to acid and dry conditions and take up hydrophobic compounds from the gas phase more easily than wet bacterial biofilms. In the present study, a biofilter packed with a mixture of perlite and Pall rings and fed alpha-pinene-polluted air was inoculated with a new fungal isolate identified as Ophiostoma species. alpha-Pinene is a volatile pollutant typically found in waste gases from wood-related industries. The temperature of waste gas streams from pulp and paper industries containing alpha-pinene is usually higher than ambient temperature. Studies were undertaken here on the effect on performance of temperature changes in the range of 15-40 degrees C. The effect of temperature on biodegradation kinetics in continuous reactors was elucidated through equations derived from the Arrhenius formula. Moreover, the effects of the relative humidity (RH) of the inlet gas phase, transient loads (shock or starvation), and the nature of the nitrogen source on alpha-pinene removal were also studied in this research. The results suggest that the fungal biofilter appears to be an effective treatment process for the removal of alpha-pinene. The optimal conditions are: temperature around 30 degrees C, RH of the inlet waste gas stream around 85%, and nitrate as nitrogen source. The fungal biofilter also showed a good potential to withstand shock loads and recovered rapidly its full performance after a 3-7 days starvation period.  相似文献   

11.
Research and application of biotechnology in textile industries in China   总被引:1,自引:0,他引:1  
Textile industry is a conventional and pillar industry in China, which possesses a considerable proportion of the national economy. In recent years, special attention has been paid to the application of biotechnology in textile industries in China. As an interdiscipline between natural science and engineering science, textile biotechnology has much effect on China's textile industry. This paper summarizes current developments and highlights those areas where biotechnology might play an increasingly important role in China's textile industry as follows:
(1) Development of new types of textile fibers and polymers, such as Bt cotton naturally colored cotton, colored silk and silk gene-sequence, spider silk non-wovens, chitin fiber and chitosan derivatives, etc.

(2) Application of enzyme technology in textile wet processing, such as alkaline pectinase, PVA-degrading enzyme, cutinase and catalase used for cotton preparation, neutral cellulase for denim washing, transglutaminase for wool modification, protease for silk degumming as well as pectinase and hemicellulases for retting of bast fibers.

(3) Treatment of textile effluents with biotechnology.

Keywords: Biotechnology; Textile industries; Enzymes  相似文献   


12.
木聚糖是一种在自然界中含量仅次于纤维素的丰富的可再生资源,木聚糖酶是一类可以将木聚糖水解成单糖和寡糖的酶,利用木聚糖酶将木聚糖分解后的产物被广泛应用于食品、造纸以及纺织等行业。木聚糖酶按其对酸碱环境的耐受能力分为碱性木聚糖酶、中性木聚糖酶和酸性木聚糖酶,其中碱性木聚糖酶适合应用于造纸工业中,尤其在造纸的制浆、促进漂白及废纸脱墨等多种工艺中,可以显著提高纸张质量,有效降低氯气排放量,从而减少对环境的污染。随着生物技术的进步,利用基因工程技术可以对碱性木聚糖酶进行分子改造,以提高其耐碱、耐热能力,扩大其在工业应用中的条件范围。介绍碱性木聚糖酶在分子改造方面的研究进展以及其在造纸漂白和制浆、废纸脱墨中的应用。  相似文献   

13.
Wood decay under the microscope   总被引:3,自引:0,他引:3  
Many aspects of the interactions between host wood structure and fungal activity can be revealed by high resolution light microscopy, and this technique has provided much of the information discussed here. A wide range of different types of decay can result from permutations of host species, fungal species and conditions within wood. Within this spectrum, three main types are commonly recognised: brown rot, white rot and soft rot. The present review explores parts of the range of variation that each of these encompasses and emphasizes that degradation modes appear to reflect a co-evolutionary adaptation of decay fungi to different wood species or the lignin composition within more primitive and advanced wood cell types. One objective of this review is to provide evidence that the terms brown rot, white rot and soft rot may not be obsolete, but rigid definitions for fungi that are placed into these categories may be less appropriate than thought previously. Detailed knowledge of decomposition processes does not only aid prognosis of decay development in living trees for hazard assessment but also allows the identification of wood decay fungi that can be used for biotechnology processes in the wood industry. In contrast to bacteria or commercial enzymes, hyphae can completely ramify through solid wood. In this review evidence is provided that wood decay fungi can effectively induce permeability changes in gymnospermous heartwood or can be applied to facilitate the identification of tree rings in diffuse porous wood of angiosperms. The specificity of their enzymes and the mild conditions under which degradation proceeds is partly detrimental for trees, but also make wood decay fungi potentially efficient biotechnological tools.  相似文献   

14.
Lactic acid is a commonly occurring organic acid, which is valuable due to its wide use in food and food-related industries, and its potential for the production of biodegradable and biocompatible polylactate polymers. Lactic acid can be produced from renewable materials using various fungal species of the Rhizopus genus, which have advantages compared to the bacteria, including their amylolytic characteristics, low nutrient requirements and valuable fermentation by-product—fungal biomass. This paper reviews recent research in process engineering, metabolic and enzymetic mechanisms, and molecular biotechnology associated with lactic acid production by the Rhizopus fungi to get a better understanding of biochemical activities. The major process components: renewable materials, bioreactor systems and process modeling are reviewed. The role of key bioprocess parameters, such as nutrient composition, pH and growth morphology, involved in the production of lactic acid is discussed in detail. In addition, recent advances in simultaneous saccharification and fermentation, molecular genetic approaches, and enzymetic and metabolic pathways involved in the production of lactic acid by fungal strains are discussed.  相似文献   

15.
Composites from recycled newspaper would result in the effective use of the waste product which is currently burned or land-filled, as well as potential reduction in the cost of manufactured composite. In this work, old newspaper (ONP) together with yellowish wood pulp and waste polystyrene from packaging were used to produce composite. The technique studied in this work is an alternative to the conventional melt compounding and was expected to provide efficient wetting of fibers by the polymer. Polystyrene was grafted with acrylonitrile, ethylmethacrylate and butylmethacrylate, respectively, using benzoyl peroxide as an initiator. The amount of polystyrene to monomer is 1:0.75 and to initiator is 1:1. The grafted copolymers were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Different ratios of waste polystyrene or grafted waste polystyrene were mixed with a blend of old newsprint and wood pulp to form composites. The mechanical properties of these composites as well as water uptake were studied. The tensile properties of the prepared composites did not show essential improvement, except for the modulus of elasticity. Scanning electron microscopy indicate that composites with grafted polystyrene showed more homogeneity than the composite with polystyrene and also than blank, so the grafted polymer is distributed very well improving the mechanical properties of the composites. Strong adhesion between the fiber and grafted polymer was found.  相似文献   

16.
17.
Thermotolerant and thermostable laccases   总被引:1,自引:0,他引:1  
Laccases are phenol-oxidizing, usually four-copper containing metalloenzymes. For industrial and biotechnological purposes, laccases were among the first fungal oxidoreductases providing larger-scale applications such as removal of polyphenols in wine and beverages, conversion of toxic compounds and textile dyes in waste waters, and in bleaching and removal of lignin from wood and non-wood fibres. In order to facilitate novel and more efficient bio-catalytic process applications, there is a need for laccases with improved biochemical properties, such as thermostability and thermotolerance. This review gives a current overview on the sources and characteristics of such laccases, with particular emphasis on the fungal enzymes.  相似文献   

18.
The double-pronged problem of quantity, and disposal of waste streams from a myriad of industries, is becoming increasingly acute, the world over. The use of earthworms as a waste treatment technique for such wastes is gaining popularity. This method is commonly known as vermicomposting. Compared to conventional microbial composting, vermicomposting produces a product that is more or less homogenous, with desirable aesthetics, with reduced levels of contaminants and tends to hold more nutrients over a longer period, without impacting the environment. Like in other related waste treatment techniques, certain parameters need to be established for the design of efficient and economical vermicomposting systems. Specifically, the focus of this study was to investigate and establish an optimal stocking density and an optimal feeding rate for the vermicomposting of biosolids, with paper mulch provided as bedding. A stocking density of 1.60 kg-worms/m2 (0.33 lb-worms/ft2) and a feeding rate of 1.25 kg-feed/kg-worm/day resulted in the highest bioconversion of the substrate into earthworm biomass. The best vermicompost was obtained at the same stocking density and a feeding rate of 0.75 kg-feed/kg-worm/day.  相似文献   

19.
The pharmaceutical and agro-biotechnology industries have been confronted by dwindling product pipelines and rapid developments in life sciences, thus demanding a strategic rethink of conventional research and development. Despite offering both industries a solution to the pipeline problem, the life sciences have also brought complex regulatory challenges for firms. In this paper, we comment on the response of these industries to the life science trajectory, in the context of maturing conventional small-molecule product pipelines and routes to market. The challenges of managing transition from maturity to new high-value-added innovation models are addressed. Furthermore, we argue that regulation plays a crucial role in shaping the innovation systems of both industries, and as such, we suggest potentially useful changes to the current regulatory system.  相似文献   

20.
This component of plant cell walls, which gives wood its woody nature, is disposed of as waste by the paper-pulp industries of the United States to the extent of more than three million tons annually. Economic utilization of it has long been a problem, and present day uses include conversion of it into vanillin for Savoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号