首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With one exception (NCIB 9668), the extracellular amylases from 10 strains of Bacillus licheniformis were thermostable and retained more than 98% of their original activity after incubation at 85°C for 60 min. The enzyme from B. licheniformis NCIB 6346 was purified 30-fold by ion-exchange chromatography and was characterized. It had an endo-action on starch yielding maltopentaose as the major product, and was identified as an α-amylase. The purified enzyme had a molecular weight of 62 650, was stable between pH 7 and 10 and was maximally active at 70-90°C at pH 7.0. It closely resembled commercial thermostable α-amylases in its general properties and it is concluded that B. licheniformis provides a good source of these enzymes.  相似文献   

2.
Bacillus licheniformis alpha-amylase (BLA) is widely used in various procedures of starch degradation in the food industry, and a BLA species with improved activity at higher temperature and under acidic conditions is desirable. Two BLA species, designated as PA and MA, have been isolated from the wild-type B. licheniformis strain and a mutant strain, respectively. In this study, their starch-hydrolysis activity and thermal stability were examined. MA showed higher activity than PA, especially at acidic pH (pH 5.0-5.5), and even after 1 h of treatment at 90 degrees C. MA was active in the range of pH 4.0-8.0, which is much wider than that (pH 4.5-7.5) of PA. It was shown that the proton dissociation constants on the acidic and alkaline sides (pKa1 and pKa2) were shifted to more acidic and basic values, respectively, by the mutation of PA to MA. The activation energy and thermodynamic parameters for their thermal inactivation indicate that MA is more thermally stable and catalytically active than PA, suggesting that MA could be useful for glucose-production process coupled with reactions catalyzed by beta-amylase.  相似文献   

3.
The hydrolysis of amylopectin potato starch with Bacillus licheniformis alpha-amylase (Maxamyl) was studied under industrially relevant conditions (i.e. high dry-weight concentrations). The following ranges of process conditions were chosen and investigated by means of an experimental design: pH [5.6-7.6]; calcium addition [0-120 microg/g]; temperature [63-97 degrees C]; dry-weight concentration [3-37% [w/w]]; enzyme dosage [27.6-372.4 microL/kg] and stirring [0-200 rpm]. The rate of hydrolysis was followed as a function of the theoretical dextrose equivalent. The highest rate (at a dextrose equivalent of 10) was observed at high temperature (90 degrees C) and low pH (6). At a higher pH (7.2), the maximum temperature of hydrolysis shifted to a lower value. Also, high levels of calcium resulted in a decrease of the maximum temperature of hydrolysis. The pH, temperature, and the amount of enzyme added showed interactive effects on the observed rate of hydrolysis. No product or substrate inhibition was observed. Stirring did not effect the rate of hydrolysis. The oligosaccharide composition after hydrolysis (at a certain dextrose equivalent) did depend on the reaction temperature. The level of maltopentaose [15-24% [w/w]], a major product of starch hydrolysis by B. licheniformis alpha-amylase, was influenced mostly by temperature.  相似文献   

4.
Two species of Bacillus producing thermostable α-amylase with activity optima at alkaline pH are reported here. These organisms were isolated from soil and have been designated as Bacillus licheniformis CUMC 305 and B. coagulans CUMC 512. The enzymes released by these two species were partially purified up to about 81- and 72-fold respectively of the initial activity. The enzyme from B. licheniformis showed a wide temperature-range of activity, with optimum at 91°C. At this temperature it remained stable for 1 h. It retained 40–50% activity at 110°C and showed only 60% of its activity at 30°C. The enzyme showed a broad pH range of activity (4–10) retaining substantial activity on the alkaline side. The optimum pH was 9·5. The enzyme of B. coagulans showed activity up to 90°C, with optimum at 85°C and had a wide pH range with optimum at 7·5–8·5. The hydrolysis pattern of the substrate starch by these enzymes indicated that glucose, maltose, maltotriose and maltotetraose are the principal products rather than higher oligosaccharides.  相似文献   

5.
Aminopeptidase is isolated and purified from the culture liquid of the thermophilic strain of Bacillus licheniformis. The aminopeptidase predominantly splits off N-terminal leucin in short peptides and hydrolyzes leucinamide as well. The molecular weight of the enzyme is about 60 kDa. The enzyme is able to form aggregates. Optimum of aminopeptidase activity was demonstrated at pH 8.0-8.3 and temperature of 85 degrees C. The enzyme is inactivated by metal-binding reagents and reducing substances, and is activated by cobalt and PCMB ions. The EDTA-inactivated enzyme activity is reduced by cobalt and zinc ions, however the latter has no activating action. The enzyme under study is characterized by high thermostability: in the presence of the substrate at the temperature of 90 degrees C the reaction linearity is retained for not less than 2 h and without the substrate the half-life of the aminopeptidase at 90 degrees C is 145 min. Extracellular aminopeptidase of the thermophilic strain of B. licheniformis is a new enzyme differing from the aminopeptidases described by the present in high thermostability, induced, evidently, by the presence of one or several disulphide bonds in the enzyme molecule.  相似文献   

6.
The microorganisms Trichosporon cutaneum and Bacillus licheniformis were used to develop a microbial biochemical oxygen demand (BOD) sensor. It was found that T. cutaneum gave a greater response to glucose, whereas B. licheniformis gave a better response to glutamic acid. Hence, co-immobilized T. cutaneum and B. licheniformis were used to construct a glucose and glutamic acid sensor with improved sensitivity and dynamic range. A membrane loading of T. cutaneum at 1.1x10(8 )cells ml(-1) cm(-2) and B. licheniformis at 2.2x10(8) cells ml(-1) cm(-2) gave the optimum result: a linear range up to 40 mg BOD l(-1) with a sensitivity of 5.84 nA mg(-1) BOD l. The optimized BOD sensor showed operation stability for 58 intermittent batch measurements, with a standard deviation of 0.0362 and a variance of 0.131 nA. The response time of the co-immobilized microbial BOD sensor was within 5-10 min by steady-state measurement and the detection limit was 0.5 mg BOD l(-1). The BOD sensor was insensitive to pH in the range of pH 6.8-7.2.  相似文献   

7.
【目的】地衣芽孢杆菌MY75菌株的几丁质酶基因的异源表达,并对表达蛋白的特性进行研究。【方法】制备MY75菌株培养上清粗蛋白,利用酶谱分析确定具有几丁质酶活的蛋白分子量。将该蛋白进行飞行时间质谱分析,确定其部分氨基酸序列,设计PCR引物对MY75菌株的几丁质酶基因进行克隆及异源表达。对表达蛋白的最适反应温度及pH,温度耐受性及金属离子对酶活力的影响等特性进行了研究,并测定了表达蛋白对真菌孢子萌发的抑制活性和对甜菜夜蛾幼虫的杀虫增效作用。【结果】酶谱分析证明MY75菌株培养上清液中仅含有一种55kDa的几丁质酶。将该编码基因chiMY克隆及序列分析后发现,基因长度为1797bp,编码599个氨基酸。在大肠杆菌中异源表达的几丁质酶ChiMY蛋白的分子量为67kDa。质谱分析证明,55kDa蛋白与67kDa蛋白序列相同。ChiMY最适pH和最适温度分别为7.0和50°C,为中性几丁质酶。Li+,Na+,和Mg2+离子对表达蛋白的酶活力具有促进作用,Mn2+,Cr3+,Zn2+和Ag+离子则能显著抑制酶活力,Cu2+和Fe3+离子完全抑制酶活性。生物测定的结果显示,异源表达的MY75几丁质酶能够抑制小麦赤霉及黑曲霉的孢子萌发,并且对苏云金芽孢杆菌的杀虫活力具有增效作用。【结论】地衣芽孢杆菌MY75菌株中仅有一种55kDa几丁质酶,其编码基因能够在大肠杆菌中大量表达,表达蛋白分子量与野生型蛋白之间有显著差异,由此证明MY75菌株中存在着几丁质酶的剪切加工过程。明确了地衣芽孢杆菌几丁质酶ChiMY具有抑制真菌活性及杀虫增效作用。上述全部研究结论在国内首次报道。  相似文献   

8.
Qin Y  Fang Z  Pan F  Zhao Y  Li H  Wu H  Meng X 《Biotechnology letters》2012,34(5):895-899
The calcium-binding residues, Tyr302 and His235, and the sodium-binding residue, Asp194, on the activity of Bacillus licheniformis α-amylase were investigated using site-directed mutagenesis. Tyr302 and His235 were replaced by Asn and Asp, respectively, to produce the mutants Y302N and H235D; Asp194 was replaced by Ala to produce D194A. The mutant amylases were purified to homogeneity; each was ~53?kDa. The specific activity of the D194A was 236?U?mg(-1), lower than the specific activity of the wild-type enzyme by 55%. No significant changes of thermostability, optimum temperature, and optimum pH level were observed in D194A. Mutant amylases with H235D and Y302N significantly improved their specific activity by 43% (754?U?mg(-1)) and 7% (563?U?mg(-1)), respectively, compared with the wild-type enzyme. H235D substitution decreased its optimum pH by approx. 0.5-1 pH unit.  相似文献   

9.
The metabiotic effect of Bacillus licheniformis on Clostridium botulinum was examined. B. licheniformis elevated the pH of a model system with an initial pH of 4.4 so that C. botulinum grew and produced toxin. Toxin production was observed when spores from both species were coinoculated at levels as low as 10 spores per ml. When pint jars of tomatoes were used, canner size contributed to a 10,000-fold difference in the lethality of a boiling water bath process on B. licheniformis spores. Botulinal toxin was not detected in pH-elevated jars of tomatoes containing C. botulinum spores.  相似文献   

10.
A gene encoding a new amylolytic enzyme of Bacillus licheniformis (BLMA) has been cloned, and we characterized the enzyme expressed in Escherichia coli. The genomic DNA of B. licheniformis was double-digested with EcoRI and BamHI and ligated the pBR322. The transformed E. coli was selected by its amylolytic activity, which carries the recombinant plasmid pIJ322 containing a 3.5-kilobase fragment of B. licheniformis DNA. The purified enzyme encoded by pIJ322 was capable of hydrolyzing pullulan and cyclodextrin as well as starch. It was active over a pH range of 6-8 and its optimum temperature was 50 degrees C. The molecular weight of the enzyme was 64,000, and the isoelectric point was 5.4. It degraded soluble starch by cleaving maltose units preferentially but did not attack alpha-1,6-linkage. The enzyme also hydrolyzed pullulan to panose units exclusively. In the presence of glucose, however, it transferred the panosyl moiety to glucose with the formation of alpha-1,6-linkage. The specificity of transferring activity is evident from the result of the maltosyl-transferring reaction which produces isopanose from maltotriose and glucose. The molecular structure of the enzyme deduced from the nucleotide sequence of the clone maintains limited similarity in the conserved regions to the other amylolytic enzymes.  相似文献   

11.
12.
A bacterial strain, Bacillus licheniformis, has been isolated and identified which produces high-temperature alkaline alpha-amylase. Cultural conditions, such as types of carbon and nitrogen sources, temperature, pH, and time of reaction, have been optimized for production of alpha-amylase in shake flask and fermenter. The enzyme produced was quite active even at 100 degrees C; however, it showed optimum activity at 90 degrees C. It exhibited optimum activity in the broad pH range 5.5-10. The effects of Na(+) and Ca(2+) ions on enzyme activity was also studied.  相似文献   

13.
Half-lives of Bacillus alpha-amylases at 90 degrees C and pH 6.5 greatly increase in the series from Bacillus amyloliquefaciens to Bacillus stearothermophilus to Bacillus licheniformis, e.g. the difference in thermostability between the first and the third enzymes exceeds 2 orders of magnitude. This stabilization is achieved by lowering the rate constant of monomolecular conformational scrambling, which is the cause of irreversible thermoinactivation of B. amyloliquefaciens and B. stearothermophilus alpha-amylases, so that for B. licheniformis alpha-amylase, another process, deamidation of Asn/Gln residues, emerges as the cause of inactivation. The extra thermostability of the thermophilic enzyme was found to be mainly due to additional salt bridges involving a few specific lysine residues (Lys-385 and Lys-88 and/or Lys-253). These stabilizing electrostatic interactions reduce the extent of unfolding of the enzyme molecule at high temperatures, consequently making it less prone to forming incorrect (scrambled) structures and thus decreasing the overall rate of irreversible thermoinactivation. The implications of these findings for protein engineering are discussed.  相似文献   

14.
Hemicellulose is a major component of lignocellulose biomass. Complete degradation of this substrate requires several different enzymatic activities, including xylanase. We isolated a strain of Bacillus licheniformis from a hot springs environment that exhibited xylanase activity. A gene encoding a 23-kDa xylanase enzyme, Xyn11, was cloned, and the recombinant protein was expressed in an Escherichia coli host and biochemically characterized. The optimum activity of the enzyme was at pH 5-7 and 40-50 degrees C. The enzyme was stable at temperatures up to 50 degrees C. Against birchwood xylan, the enzyme had an apparent K ( m ) of 6.7 mg/mL and V (max) of 379 mumol/min/mg.  相似文献   

15.
When cultured in feather-containing broth with a growth optimum of pH 7.0 and 47 degrees C, a Bacillus licheniformis strain exhibited a high chicken feather-degrading activity. A trypsin-like protease was isolated from its ferment broth and was partially characterized. The enzyme was constitutively secreted and was highly active towards N-benzoyl-Phe-Val-Arg-p-nitroanilide as chromogenic substrate. Its pH optimum was 8.5 and it exhibited the highest activity at 52 degrees C. Fractionation on Sephadex G-100 column revealed that its molecular mass was about 42 kDa. The enzyme, which is new for the genus Bacillus, is a thiol protease, as tosyl-L-phenylalanine chloromethyl ketone, tosyl-L-lysine chloromethyl ketone, phenylmethylsulfonyl fluoride and ethylenediamine tetraacetate did not inhibit it, while HgCl2 and para-chloromercuribenzoate lowered its activity.  相似文献   

16.
Diaminopimelate decarboxylase of sporulating bacteria   总被引:6,自引:4,他引:2       下载免费PDF全文
The meso-diaminopimelate (DAP) decarboxylase of Bacillus licheniformis, a pyridoxal phosphate-requiring enzyme, was stabilized in vitro by 0.15 m sodium phosphate buffer (pH 7.0) containing 1 mm 2,3-dimercaptopropan-1-ol, 100 mug of pyridoxal phosphate per ml, and 3 mm DAP. When the meso-DAP concentration was varied, the enzyme in cell-free extracts of B. licheniformis exhibited Michaelis-Menten kinetics. Pyridoxal phosphate was the only pyridoxine derivative which acted as a cofactor. The enzyme was subject to both inhibition and repression by l-lysine. The inhibitory effect of lysine was on the K(m) (meso-DAP). A maximum repression of about 20% was obtained. No significant inhibition or activation was produced by cadaverine, dipicolinic acid, phenylalanine, pyruvate, ethylenediamine-tetraacetate, adenosine triphosphate, adenosine diphosphate, or adenosine monophosphate. When B. licheniformis was grown in an ammonium lactate-glucose-salts medium, an increase in DAP decarboxylase specific activity occurred during cellular growth with a maximal specific activity at the end of the exponential phase. As soon as growth ceased, the specific activity of the enzyme decreased to approximately one-half of the maximal specific activity and remained at this level thereafter. When B. cereus was grown in complex media, there was an increase in DAP decarboxylase specific activity up to the end of the exponential phase. Thereafter, the specific activity decreased to a nondetectable level in 4 hr. Dipicolinic acid synthesis was first detected 15 min later and was essentially complete after an additional 2.5 hr. The significance of the disappearance of DAP decarboxylase in B. cereus was discussed with regard to control of dipicolinic acid and spore mucopeptide biosynthesis.  相似文献   

17.
对地衣芽孢杆菌基因组序列分析显示。其中标注为amyX的基因可能编码普鲁兰酶。以PCR方法,从地衣芽孢杆菌染色体DNA中扩增出amyX基因蛋白编码区,插入大肠杆菌表达载体pET28aT7启动予下游。含重组质粒的大肠杆菌BL21(DE3)在IPTG诱导下表达出有活性的普鲁兰酶。酶学性质初步分析表明,重组普鲁兰酶最适反应温度为40℃,最适pH值为6.0。  相似文献   

18.
The mature peptide of Bacillus licheniformis xylanase A (BlxA) was successfully expressed in Pichia pastoris under the control of AOX1 promoter. After 96-h 0.25% methanol induction, the activity of recombinant B. licheniformis xylanase A (reBlxA) in culture supernatant was 122.9 U/mg. Enzymatic properties assays showed that the optimum temperature and pH for reBlxA were 60 degrees C and pH 6.0, respectively. When treated at 70 degrees C, pH 6.0 for 2 min, the residual activities of the reBlxA were 76%. Over 80% of reBlxA activity was retained after treatment of the enzyme by preincubation over a pH range of 5.0-9.0 for 1h at 25 degrees C. High performance liquid chromatography (HPLC) analysis revealed that xylotriose (X3) was the main hydrolysis product released from birchwood xylan and wheat bran insoluble xylan by reBlxA. The mode of action studies showed that reBlxA was an endo-acting xylanase and xylobiose (X2), xylotriose, xylotetraose (X4), xylopentaose (X5), and xylohexaose (X6) could be hydrolyzed by it. This is the first report on the expression of reBlxA in yeast and on determining and quantifying the hydrolysis products released from xylans by reBlxA.  相似文献   

19.
A new esterase activity from Bacillus licheniformis was characterized from an Escherichia coli recombinant strain. The protein was a single polypeptide chain with a molecular mass of 81 kDa. The optimum pH for esterase activity was 8-8.5 and it was stable in the range 7-8.5. The optimum temperature for activity was 45 degrees C and the half-life was 1 h at 64 degrees C. Maximum activity was observed on p-nitrophenyl caproate with little activity toward long-chain fatty acid esters. The enzyme had a KM of 0.52 mM for p-nitrophenyl caproate hydrolysis at pH 8 and 37 degrees C. The enzyme activity was not affected by either metal ions or sulfydryl reagents. Surprisingly, the enzyme was only slightly inhibited by PMSF. These characteristics classified the new enzyme as a thermostable esterase that shared similarities with lipases. The esterase might be useful for biotechnological applications such as ester synthesis.  相似文献   

20.
The membrane penicillinase of Bacillus licheniformis 749/C is a phospholipoprotein which differs from the exoenzyme in that it has an additional sequence of 24 amino acid residues and a phosphatidylserine at the NH2 terminus. In exponential-phase cultures, the conversion of membrane penicillinase to exoenzyme occurs at neutral and alkaline pH. An enzyme that will cleave the membrane penicillinase to yield the exoenzyme is present (in small amounts) in exponential-phase cells and is released during their conversion to protoplasts. The enzyme is found in the filtrate of a stationary-phase culture of the uninduced penicillinase-inducible strain 749 and has been purified to apparent homogeneity from this source. The protease has an approximate molecular weight of 21,500 and requires Ca2+ ions for stabilization. It has a pH optimum of 7.0 to 9.5 for hydrolysis of casein and for the cleavage of membrane penicillinase. Both activities are inhibited by diisopropylfluorophosphate; hence, the enzyme is a serine protease. This enzyme may be entirely responsible for the formation of exopenicillinase by this organism, since the other neutral and alkaline proteases of strain 749 have little, if any, activity in releasing exopenicillinase. The enzyme has been termed penicillinase-releasing protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号