首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The architecture of the branching system in species of Pappophoreae (Poaceae) has not been studied in detail. This work covers the spatial and temporal variation of the shoot system in species of Cottea, Enneapogon, Kaokochloa, Pappophorum and Schmidtia (Pappophoreae). Growth form variation of the species of Pappophoreae is related to the different functions of the axillary buds. We identify six growth form models within Pappophoreae. These models represent reference points along a continuum of variations that are characteristic of certain genera or species within a genus.  相似文献   

2.
A new model of three-dimensional tree architecture development was made, in which the growth of branches depends on their local light environment. The unit of the tree architecture is a linear stem called the branch unit (BU). Current-year BU's have leaves at their distal end. The local light environment is calculated considering mutual shading among leaved BU's. During the growth of a model tree, the number of leaved BU's increases and mutual shading becomes severe. The shadling leads to production of fewer new BU's and the death of some BU's, both of which restrain the overcrowding of BU's. The shape of the crowns of trees grown in a model forest stand varies with their position in the stand in a similar way as observed in real forests. This also results from the growth response of BU's to their local light environment. A model tree in which the photoassimillates were shared equally among the BU's was much disadvantaged in competition with the original model trees.  相似文献   

3.
Niche theory and plant growth form   总被引:2,自引:0,他引:2  
Plant growth form diversity (GFD) is high in the vegetation of North American deserts, and increases from north (Great Basin Desert) to south (Sonoran Desert). While abiotic features (annual temperature, precipitation, and seasonality) appear to limit the range of desert plant GFD, biotic features associated with the coexisting plants at a site, and their GF distribution, add further constraints. Climate may constrain the GF options at certain sites and select for some degree of GF convergence there, but within sites other species in the vegetation select for GF segregation that fosters the local coexistence of species. In this paper GF variation is viewed along structural niche axes, and related to classical niche theory; several corollaries of the theory are examined in the light of plant GF patterns. These are: a) regular spacing of species on the structural niche axis, and the concept of limiting similarity; b) niche axis complementarity, such that species dissimilar in position on one axis, e.g. GF, are similar in position on other axes, e.g. habitat or substrate, and vice versa; c) niche shifts in GF within species are expected, and occur, as the suite of coexisting species varies among sites with similar climate; d) in some desert plant guilds species with very similar GF do not coexist at a site, but act as geographical replacements in different sites.  相似文献   

4.
Heathlands in Brittany are subject to recurrent summer burning. Recolonisation after large fires begins with bryophytes, but species composition during succession may be altered by colonies of Polytrichum commune Hedw. which appears to be able to prevent reestablishment of the typical heathland formation. Three complementary levels of investigation were adopted in attempting to understand how P. commune, manages to persist and succeed in space open to rapid saturation.Analysis at the level of the local plant community, showed radical changes in the distribution and composition of the herbaceous and muscinal layers over two years. Between May 1992 and May 1994, P. commune cover increased from 13% to 77% accompanied by an appreciable decrease in other pioneer species.We compared individual colony growth of P. commune with that of Polytrichum piliferum, another pioneer moss. In both species, horizontal and vertical growth occurred in spring and autumn. During 1995, P. commune colony diameter had increased by a factor of 4.0 compared with 3.6 for P. piliferum. Over the same interval, colony height increased by a factor of 1.3 for P. commune compared with 1.8 for P. piliferum.Analysis at the level of the module showed that 79% of experimentally cultured stems produced branches, 25% producing a single branch, 32% two branches, and 25% 4 to 7 branches. The lower the location of new branches on culture stems, the longer their leafed section and the greater their overall length. These new branches were morphologically and functionally new ramets.These observations on P. commune conform to the inhibition model of community succession (Connell & Slatyer 1977). Successional patterns recorded in the present study could be interpreted in terms of differences in species colony growth ability. Dense colony growth would allow a species to saturate one of the more important ecosystem compartment. Polytric capacity to grow simultaneously and efficiently in the few centimetres in and above the soil surface could prevent seedling establishment and decrease fitness of coexisting Poaceae.  相似文献   

5.
The growth vs. irradiance response of the seagrass Zostera noltii from Cadiz Bay Natural Park (southwestern Spain) was characterised. Plants were exposed along 14 days to different light treatments (1%, 7%, 42% and 100% surface irradiance, SI), using shade screens in an outdoor mesocosm. Growth at 100% SI (1.6 mg DW plant−1 day−1) was lower than that at 42% SI (2.4 mg DW plant−1 day−1), suggesting photoinhibition. The minimum light requirement estimated was 0.8 mol photons m−2 day−1 (2% SI). Light availability affected the pattern of plant development and the overall plant growth. The contribution of the apical shoots to the aboveground production was nearly constant (c.a. 1.13 cm plant−1 day−1) regardless of the light level (except at 1% SI). In contrast, recruitment and growth of lateral shoots arising from the main rhizome axes accounted for the observed differences in aboveground growth. Rhizome branching was only observed at 42% SI. The possibility of a light threshold for rhizome branching could explain the seasonality of shoot recruitment, as well as the observed decrease in shoot density along depth (or light) gradients in seagrass meadows. Carbon demands at low irradiances (1% and 7% SI) were partially met by mobilization of carbohydrate reserves (sucrose in belowground and starch in aboveground parts). Plant nitrogen content decreased with increasing light, especially in belowground parts, reaching critical levels for growth.  相似文献   

6.
Ramification in tree structure was investigated by the main axis cutting method, which differs from the ordinary stratified clipping method. An axis running from the arbitrary terminal leader of the shoot to the stem base was termed the “main axis”. Cutting the main axis into pieces of constant length gives the “segment layer”, which consists of segments of the main axis and all branches and leaves diverging from the respective segments. There was a linear relationship between the weight of a main axis segment (in the range where leaves exist) of constant length and that of all the parts above the segment. Since plant form is determined by branches diverging regularly from the mother branch or stem, this linear relationship is considered to support the concept of the pipe model theory. It is also suggested that the proportionality constant of the linear relationship may specify the branching structure or ramifications of plant form.  相似文献   

7.
异叶苣苔属地上茎的生长式样及其系统发育意义   总被引:3,自引:0,他引:3  
对异叶苣苔属植物地上茎形态发生过程的观察旨在揭示该属地上茎的生长式样。该研究发现异 叶苣苔属植物地上茎的生长式样并不是以往所认为的简单顶端生长。该属植物的顶芽已完全受到抑制。其地上茎实际上是萌发于小型叶叶腋的侧芽替代顶芽生长所形成的各级侧枝系统,即合轴分枝系统。异叶苣苔属植物地上茎的不分枝情况是位于大型叶叶腋的腋芽受到抑制所致,纯粹是一种次生现象,并不是尖舌苣苔族植物原始祖先的孑遗性状。尖舌苣苔族其他属植物地上茎的生长式样并不均是从异叶苣苔属植物的生长式样演化而来。出蕊苣苔属和异叶苣苔属植物地上茎的生长式样可能来自同一个不太远的祖先,但已经向着不同的方向演化。独叶苣苔属植物复杂的圆锥状对花聚伞花序并非从异叶苣苔属地上茎上部,即生殖生长部分退化而来,乃幼态成熟的复化过程所致。尖舌苣苔属的总状花序可能更接近尖舌苣苔族的原始祖先类型。  相似文献   

8.
The morphogenesis of shoots in Whytockia W. W. Smith was investigated in order to reveal its growth pattern. The shoot in Whytockia has lost apical growth, which is contrary to the present knowledge about its growth pattern. Its stem is in fact a lateral branch system formed by sprouting of lateral buds in axils of small leaves substituting for the thoroughly restrained phyllogens. The unbranched stem of the genus is due to the restrained state of axillary buds in axils of large leaves. This so-called simple stem is secondary in phylogeny rather than relict in Epithemateae. According to the revealed growth pattern of the shoot in Whytockia, the present paper discusses the phylogenetic relationships between Whytockia and Loxonia, Monophyllaea and Rhynchoglossum in Epi-themateae.  相似文献   

9.
Interactions between organisms add complexity to ecosystem function, particularly on coral reefs. The Caribbean orange icing sponge Mycale laevis is semi-cryptic, often growing under coral colonies or between coral branches. This association is reportedly a mutualism, with the sponge deterring boring sponges from invading the coral skeleton and the coral providing an expanding surface for sponge growth. But is there an alternative explanation for the proximity of sponge and coral? We examined the importance of fish predation on the growth of the sponge. While the semi-cryptic growth form of M. laevis predominates on reefs off the Florida Keys and the Bahamas Islands, M. laevis grows with a non-cryptic, erect morphology off Bocas del Toro, Panama. Surveys revealed that sponge-eating fishes were rare or absent at Bocas del Toro compared to sites in the Florida Keys. Because past studies were inconsistent about the palatability of M. laevis to fish predators, we conducted feeding experiments with sponges from all three sites. Crude organic extracts of M. laevis from all three sites were palatable to generalist fish predators in aquarium assays, and field feeding assays and caging experiments conducted in the Florida Keys confirmed that spongivorous fishes readily ate exposed fragments of M. laevis. Our results suggest that M. laevis is restricted to its semi-cryptic growth form by spongivorous predators, with corals providing a physical refuge from predation. This alternative explanation supports the broader hypothesis that Caribbean reef sponges can be categorized on the basis of chemical defense into defended, palatable, and preferred species, the last of which are restricted to refugia.  相似文献   

10.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   

11.
An efficient method of micropropagation for Eclipta alba from young nodal axils of shoot tip explants has been developed by giving special attention to ‘priming’ in vitro plantlets in view of increasing their hardening ability after transplantation ex vitro. Among 3 cytokinins—BAP, kinetin and TDZ, BAP was found most effective in inducing and proliferating adventitious shoots. The highest frequency of responding explants (100%) and maximum number of shoots (23.0) per explant were obtained after 60 days culture on MS medium containing 8.8 μM BAP. Cent percent shoots developed roots directly from shoot base when transferred to growth regulator-free MS medium. For priming E. alba microshoots, 6.3 μM of chlorocholine chloride (CCC) was found most effective. The major changes observed in 30 days old treated shoots were, production of increased number of root, elevation of chlorophyll level in leaves and increase in plant biomass. Furthermore, arrested undesirable shoot elongation made the plants sturdier and more suitable for acclimatization. The primed micropropagated E. alba plants were healthy and survived by higher frequency (100%) in soil in comparison to the non-treated plants (84% survival).  相似文献   

12.
《Journal of bryology》2013,35(3):229-236
Abstract

The giant moss Dendroligotrichum dendroides s.l. grows as self-supporting plants up to 40 cm in height in forest habitats in Chile and New Zealand. This moss represents one of the tallest self-supporting bryophytes. Biomechanical tests indicate that the stems can develop a high degree of stiffness (Young’s modulus) via a dense hypodermal sterome that is comparable with that of woody stems of vascular plants. A comparison with mechanical properties of other terrestrial and aquatic mosses indicates that different moss growth and life forms can produce very different mechanical architectures. Values of stem stiffness can vary between different growth forms of mosses to a comparable extent to that observed among diverse growth forms of vascular plants. Plants varying profoundly in overall size, development, and phylogenetic position nevertheless appear to develop comparable mechanical adaptations and growth forms in response to certain environmental conditions.  相似文献   

13.
Summary Chloroplast DNA (cpDNA) restriction endonuclease patterns are used to examine phylogenetic relationships between Bromus subgenera Festucaria and Ceratochloa. Festucaria is considered monophyletic based on the L genome, while Ceratochloa encompasses two species complexes: the B. catharticus complex, which evolved by combining three different genomes, and the B. carinatus complex, which is thought to have originated from hybridization between polyploid species of B. catharticus and diploid members of Festucaria. All species of subgenus Ceratochloa (hexaploids and octoploids) were identical in chloroplast DNA sequences. Similarly, polyploid species of subgenus Festucaria, except for B. auleticus, were identical in cpDNA sequences. In contrast, diploid species of subgenus Festucaria showed various degrees of nucleotide sequence divergence. Species of subgenus Ceratochloa appeared monophyletic and phylogenetically closely related to the diploid B. anomalus and B. auleticus of subgenus Festucaria. The remaining diploid and polyploid species of subgenus Festucaria appeared in a distinct grouping. The study suggests that the B. catharticus complex must have been the maternal parent in the proposed hybrid origin of B. carinatus complex. Although there is no direct evidence for the paternal parent of the latter complex, the cpDNA study shows the complex to be phylogenetically very related to the diploid B. anomalus of subgenus Festucaria.  相似文献   

14.
To elucidate the significance of the simultaneous growth of vegetative and reproductive organs in the prostrate annual Chamaesyce maculata (L.) Small (Euphorbiaceae) from the standpoint of meristem allocation, we investigated plant architecture, meristem allocation, and the spatial and temporal patterns in vegetative growth and reproduction in the reproductive stage. The numbers of secondary and tertiary shoots successively increased by branching in the reproductive stage, and the sum of shoot length was greater in secondary shoots than in primary shoots. The specific shoot length (shoot length per shoot biomass) was greater in lateral shoots than in primary shoots, indicating efficient lateral shoot elongation. The internode length was shorter in secondary shoots than in primary shoots, increasing the number of nodes per shoot length in secondary shoots. Many nodes on a shoot generated two meristems, one of which committed to a flower and one to a lateral shoot. The number of reproductive meristems was greatest in tertiary shoots, and 96% of total reproductive meristems on shoots were generated in lateral shoots. On almost all nodes, the reproductive meristem developed into a flower, and 95–98% of the flowers produced a fruit. Therefore, vegetative growth by branching in the reproductive stage contributed to the increase in reproductive outputs. From the standpoint of meristem allocation, the simultaneous growth of vegetative and reproductive organs in prostrate plant species might be important for increasing the number of growth and reproductive meristems, resulting in the increase in reproductive outputs.  相似文献   

15.
Line Johansen 《Plant Ecology》2009,201(2):435-444
Plants with clonal growth can generate patches dominated by a single species. In time, patches can change and may fragment, form a ring, dissolve or both persist and expand. For patches to maintain their original habitat and simultaneously increase in size, ramets or clonal fragments must both promote local persistence inside the patch and grow out of the patch into new habitats. This study analyses simultaneously expanding and persistent Trifolium patches in a nutrient-poor lawn that is frequently cut, and where the Trifolium is competitively superior to the grass species. Trifolium primary stolon growth strategies were analyzed in relation to their location (border, middle, and center) inside the patch, and according to patch size (small, medium, and large). It was hypothesized that different growth strategies inside a patch can explain both persistent and expanding patch of Trifolium, and that growth strategies were different between patch sizes. Primary Trifolium stolons had two different growth strategies inside and at the border of patches: (i) stolons at the border were long, grew fast, had few lateral stolons, and grew out of the patch, while (ii) stolons inside the patch were smaller, grew slowly, and had more lateral stolons and a wide range of growth directions. Growth strategies were not different between patch sizes. The directional growth and the high growth rate at the border will increase the patch size with time, while the growth strategy near the center consolidates the patch in space and time, by placing ramets inside the patch. Different growth strategies near the center and on the border result in Trifolium patches that are simultaneously persistent and on the increase. The results also indicate a division of labor among primary Trifolium stolons in a patch.  相似文献   

16.
Aucuba japonica , an evergreen broad-leaved shrub. Aucuba Japonica var. borealis is widely distributed in heavy snowfall areas in Japan and is covered, shaded and physically pressured by snow for more than four months of the year. On the other hand, var. japonica is widely distributed in light snowfall areas. The sizes of new shoots and leaves were significantly different between the two varieties with different critical shoot sizes for flowering. The average new shoot dry mass of var. borealis was about one third of that of var. japonica. Despite the differences in growing conditions and shoot size, no significant differences were observed in the allometry of their shoot organs between the two varieties. Large new shoots had thicker and longer stems per biomass than small shoots because of their larger pith volume. The large shoots showed higher efficiency of stem growth per invested biomass and had a higher rate of annual height increase than small shoots. When the size of new shoot rapidly increased from year to year, i.e. the plants are growing well, initiation of flowering was postponed and vegetative growth continued. Small new shoots were tolerant of low productivity conditions but traded vertical growth for an increase in matter allocation to leaves. Received 8 July 1999/ Accepted in revised form 1 September 2000  相似文献   

17.
Susan Marks  Keith Clay 《Oecologia》1990,84(2):207-214
Summary Increasing atmospheric carbon dioxide (CO2) concentration is expected to increase plant productivity and alter plant/plant interactions, but little is known about its effects on symbiotic interactions with microorganisms. Interactions between perennial ryegrass, Lolium perenne (a C3 plant), and purpletop grass, Tridens flavus (a C4 plant), and their clavicipitaceous fungal endophytes (Acremonium lolii and Balansia epichloe, respectively) were investigated by growing the grasses under 350 and 650 l l 1 CO2 at two nutrient levels. Infected and uninfected perennial ryegrass responded with increased growth to both CO2 enrichment and nutrient addition. Biomass and leaf area of infected and uninfected plants responded similarly to CO2 enrichment. When growth analysis parameters were calculated, there were significant increases in relative growth rate and net assimilation rate of infected plants compared to uninfected plants, although the differences remained constant across CO2 and nutrient treatments. Growth of purpletop grass did not increase with CO2 enrichment or nutrient addition and there were no significant differences between infected and uninfected plants. CO2 enrichment did not alter the interactions between these two host grasses and their endophytic-fungal symbionts.  相似文献   

18.
The effect of artificial shoot clipping on the vegetative growth and sexual reproduction of the evergreen bearberry, Arctostaphylos uva-ursi, and the deciduous bog bilberry, Vaccinium uliginosum, was studied in the vicinity of a copper-nickel smelter in SW Finland. According to the research hypothesis, heavy metal induced shoot death breaks the apical dominance in the clones growing in a polluted environment. This causes activation of dormant axillary and adventitious buds and an increase in branching on the older parts of the stem. Regrowth after shoot death was studied by clipping off all the current-year shoots from experimental branches in autumn (1994) and spring (1995). Within-clone and between-clone control branches were used to test the data.Both species displayed a considerable ability to activate dormant meristems after the damage. Regrowth of the current shoots during the next growing season (1995) was about 80% compared to the within-clone control in both species after autumn clipping. Shoot clipping in early summer was more detrimental for both species, and the regrowth of A. uva-ursi was less than that of V. uliginosum. Differences in the storage reserves and source-sink mechanisms of carbon allocation between evergreen and deciduous species probably explain their distinct response. When the removed biomass was added to the living biomass of the branches, there was overcompensation in the total dry weight of A. uva-ursi after autumn clipping, and the weight was almost 90% of the control after spring clipping. The total dry weight of V. uliginosum also equalled that of the control when the removed biomass was added. No berries developed on either species in the year following the autumn treatment, because clipping removed all the flower buds. Spring clipping had no effect on the sexual reproduction of A. uva-ursi, but decreased the berry production of V. uliginosum. The degree of compensatory growth of both species was only slightly affected by the distance from the smelter. It is suggested that dormant bud activation, rapid regrowth and plastic branching contribute to the resistance mechanism to heavy metals.  相似文献   

19.
In order to evaluate the importance of growth of mosses in controlling evaporative water loss, the evaporation rates of some subalpine moss species of various growth forms were compared with each other. The growth forms of the xerophytic species examined were large cushion and compact mat, while those of the mesophytic species in the coniferous forest floor were smooth mat, weft and tall turf. The evaporation rate per moss dry weight (Ew) was much smaller in the xerophytic species than in the mesophytic species. However, the evaporation rate per basal area of moss colony (Ea) was not necessarily smaller in the xerophytic species. The relation between Ea and dry weight per basal area of the colony (Wa) had a close correlation with the growth form. It was concluded that the difference in the evaporation rate per weight between the exerophytic species and the mesophytic species was largely due to the difference in Wa, and that the growth forms of the xerophytic species were suitable for increasing Wa without increasing surface roughness.  相似文献   

20.
Differences in carbon and nutrient fractions among arctic growth forms   总被引:3,自引:0,他引:3  
Summary In a survey of 28 plant species of 6 major growth forms from Alaskan tundra, we found no consistent difference among growth forms in the chemical nature of stored reserves except for lichens and mosses (which stored C primarily as polysaccharides) and shrubs (which tended to store C more as sugars than as polysaccharides). Forbs and graminoids showed particularly great diversity in the chemical nature of stored reserves. In contrast, C, N, and P chemistry of leaves was strikingly similar among all species and growth forms. Concentrations of stored reserves of C, N, and P were highest and showed greatest seasonal fluctuations in forbs and graminoids but were relatively constant in evergreen shrubs. From this information, we draw three general conclusions: (1) the photosynthetic function of leaves strongly constrains leaf chemistry so that similar chemical composition is found in all species and growth forms: (2) the chemical nature of storage reserves is highly variable, both within and among growth forms; (3) the concentration and seasonal pattern of storage reserves are closely linked to growth-form and reflect growth-form differences in woodiness, phenology, and relative dependence upon concurrent uptake vs. storage in support of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号