首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we describe a 6 month old girl with a "pure" deletion 9 (pter----p22:) of paternal origin and very discrete facial dysmorphism as the only minimal phenotypic expression of the chromosomal imbalance. We hypothesize that the phenotypic expression in pure 9p deletion may depend from its parental origin.  相似文献   

2.
Uniparental disomy of chromosome 14 (UPD 14) results in one of two distinct abnormal phenotypes, depending upon the parent of origin. This discordance may result from the reciprocal over-expression and/or under-expression of one or more imprinted genes. We report a case of segmental paternal isodisomy for chromosome 14 with features similar to those reported in other paternal disomy 14 cases. Microsatellite marker analysis revealed an apparent somatic recombination event in 14q12 leading to proximal biparental inheritance, but segmental paternal uniparental isodisomy distal to this site. Analysis of monochromosomal somatic cell hybrids containing either the paternally inherited or the maternally inherited chromosome 14 revealed no deletion of the maternally inherited chromosome 14 and demonstrated the presence of paternal sequences from D14S121 to the telomere on both chromosomes 14. Thus, the patient has paternal isodisomy for 14q12-14qter. Because the patient shows most of the features associated with paternal disomy 14, this supports the presence of the imprinted domain(s) distal to 14q12 and suggests that the proximal region of chromosome 14 does not contain imprinted genes that contribute significantly to the paternal UPD 14 phenotype.  相似文献   

3.
We have used a panel of 13 DNA markers in the distal region of chromosome 14q to characterize deletions in three patients determined cytogenetically to have a ring or terminally deleted chromosome 14. We have characterized one patient with a ring chromosome 14 [r (14) (p13q32.33)] and two with terminal deletions [del (14) (pterq32.3:)]. The two patients with cytogenetically identical terminal deletions of chromosome 14 were found to differ markedly when characterized with molecular markers. In one patient, none of the markers tested were deleted, indicating that the apparent terminal deletion is actually due to either an undetected interstitial deletion or a cryptic translocation event. In the other patient, the deletion was consistent with the cytogenetic observations. The deleted chromosome was shown to be of paternal origin. The long-arm breakpoint of the ring chromosome was mapped to within a 350-kb region of the immunoglobulin heavy chain gene cluster (IGH). This breakpoint was used to localize markers D14S20 and D14S23, previously thought to lie distal to IGH, to a more proximal location. The ring chromosome represents the smallest region of distal monosomy 14q yet reported.  相似文献   

4.
Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin.  相似文献   

5.
A male child with multiple congenital anomalies initially was clinically diagnosed as having Smith-Lemli-Opitz syndrome (SLOS). Subsequent cytogenetic studies revealed an interstitial deletion of 17p11.2, which is associated with Smith-Magenis syndrome (SMS). Biochemical studies were not supportive of a diagnosis of SLOS, and the child did not display the typical SMS phenotype. The father's karyotype showed a paracentric inversion of 17p, with breakpoints in p11.2 and p13.3, and the same inversion was also found in two of the father's sisters. FISH analyses of the deleted and inverted 17p chromosomes indicated that the deletion was similar to that typically seen in SMS patients and was found to bracket the proximal inversion breakpoint. Available family members were genotyped at 33 polymorphic DNA loci in 17p. These studies determined that the deletion was of paternal origin and that the inversion was of grandpaternal origin. Haplotype analysis demonstrated that the 17p11.2 deletion arose following a recombination event involving the father's normal and inverted chromosome 17 homologues. A mechanism is proposed to explain the simultaneous deletion and apparent "reinversion" of the recombinant paternal chromosome. These findings have implications for prenatal counseling of carriers of paracentric inversions, who typically are considered to bear minimal reproductive risk.  相似文献   

6.
We present prenatal diagnosis of a de novo distal 18p deletion involving 14.06 Mb at 18p11.32–p11.21 by aCGH using uncultured amniocytes in a pregnancy with fetal holoprosencephaly and premaxillary agenesis. QF-PCR analysis showed that distal 18p deletion was from maternal origin. Metaphase FISH analysis confirmed haploinsufficiency of TGIF. We discuss the functions of the genes that are deleted within this region. The present case shows the usefulness of applying aCGH on uncultured amniocytes for rapid aneuploidy diagnosis in cases with prenatally detected fetal structural abnormalities.  相似文献   

7.
Summary A 10-year-old girl with partial deletion of the short arm of chromosome 9 is reported; karyotype: 46,XX,del(9)(p22). This syndrome results in a distinctive craniofacial dysmorphism with trigonocephaly and contrasting midfacial hypoplasia. Partial monosomy 9p was the result of a paternal de novo germinal deletion in this case.  相似文献   

8.
We report on a small de novo interstitial deletion of the short arm of chromosome 20, 46,XY,del(20)(p12.3p13), in a young boy with hypotonia, moderate development delay, mild facial dysmorphism and severe growth failure. This patient did not show major features of Alagille-Watson Syndrome (AWS) which are common in more proximal 20p deletions. Standard and high resolution chromosome banding analysis revealed an apparent terminal deletion. Nevertheless, using chromosomal fluorescent in situ hybridization (FISH) and molecular analysis with polymorphic markers, we demonstrated that the abnormal chromosome resulted from a de novo interstitial deletion of paternal origin spanning from D20S842 to D20S900 and covering approximately 6 Mb. These findings indicate that a karyotype can lead to insufficient characterization of an apparently terminal deletion, and that one or a few genes in 20p13-->p12.3 bands are important for normal growth.  相似文献   

9.
We report a 15 month old boy with prominent metopic suture, epicanthal folds, strabismus, low-set ears, microretrognathia, large anterior fontanel, bilateral simian creases, muscular hypotonia, and severe psychomotor retardation. He also had West syndrome. An electroencephalogram showed hypsarrythmia, and cranial MR indicated a myelinisation delay. Standard karyotyping showed additional material on one chromosome 9p. Using FISH, a terminal 7q duplication spanning 26 Mb in size and a terminal 9p deletion sized (at least) 9.1 Mb were identified. The father had a karyotype of t(7;9)(q33;p23) and the mother's karyotype was normal. The boy presented typical facial features of the distal 7q duplication syndrome but no genital anomalies attributable to his distal 9p deletion. We assume that the severe epilepsy is likely due to the trisomy 7q.  相似文献   

10.
The basic genomic defect in Wolf–Hirschhorn syndrome (WHS), including isolated 4p deletions and various unbalanced de novo 4p;autosomal translocations and above all t(4p;8p), is heterogeneous. Olfactory receptor gene clusters (ORs) on 4p were demonstrated to mediate a group of WHS-associated t(4p;8p)dn translocations. The breakpoint of a 4-Mb isolated deletion was also recently reported to fall within the most distal OR. However, it is still unknown whether ORs mediate all 4p-autosomal translocations, or whether they are involved in the origin of isolated 4p deletions. Another unanswered question is whether a parental inversion polymorphism on 4p16 can act as predisposing factor in the origin of WHS-associated rearrangements. We investigated the involvement of the ORs in the origin of 73 WHS-associated rearrangements. No hotspots for rearrangements were detected. Breakpoints on 4p occurred within the proximal or the distal olfactory receptor gene cluster in 8 of 73 rearrangements (11%). These were five t(4p;8p) translocations, one t(4p;7p) translocation and two isolated terminal deletions. ORs were not involved in one additional t(4p;8p) translocation, in a total of nine different 4p;autosomal translocations and in the majority of isolated deletions. The presence of a parental inversion polymorphism on 4p was investigated in 30 families in which the 4p rearrangements, all de novo, were tested for parental origin (7 were maternal and 23 paternal). It was detected only in the mothers of 3 t(4p;8p) cases. We conclude that WHS-associated chromosome changes are not usually mediated by low copy repeats. The 4p16.3 inversion polymorphism is not a risk factor for their origin. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Web Resources: Electronic Database Information: Online Mendelian Inheritance in Man (OMIM), (for WHS [MIM 194190]; Ensembl Human Map, ; UCSC, . An erratum to this article can be found at  相似文献   

11.
One-half of all cases of Wilms tumor (WT), a childhood kidney tumor, show loss of heterozygosity at chromosomal band 11p13 loci, suggesting that mutation of one allele and subsequent mutation or loss of the homologous allele are important events in the development of these tumors. The previously reported nonrandom loss of maternal alleles in these tumors implied that the primary mutation occurred on the paternally derived chromosome and that it was "unmasked" by loss of the normal maternal allele. This, in turn, suggests that the paternally derived allele is more mutable than the maternal one. To investigate whether germinal mutations are seen with equal frequency in maternally versus paternally inherited chromosomes, we determined the parental origin of the de novo germinal 11p13 deletions in eight children by typing lymphocyte DNA from these children and from their parents for 11p13 RFLPs. In seven of the eight cases, the de novo deletion was of paternal origin. The one case of maternal origin was unremarkable in terms of the size or extent of the 11p13 deletion, and the child did develop WT. Transmission of 11p13 deletions by both maternal and paternal carriers of balanced translocations has been reported, although maternal inheritance predominates. These data, in addition to the general preponderance of paternally derived, de novo mutations at other loci, suggest that the increased frequency of paternal deletions we observed is due to an increased germinal mutation rate in males.  相似文献   

12.
Tetrasomy 9p is a rare chromosomal syndrome and about 30% of known cases exhibit mosaicism. Approximately 50 of the reported cases with tetrasomy 9p mosaicism show a characteristic facial appearance, growth failure, and developmental delay. However, 3 patients with mosaicism for isochromosome 9p and a normal phenotype have also been reported. We report 2 additional cases of clinically normal young females with tetrasomy 9p mosaicism, one of whom also exhibited X chromosome aneuploidy mosaicism leading to an overall of 6 different cell lines. STR analysis performed on this complex mosaic case indicated that the extra isochromosome was of maternal origin while the X chromosome aneuploidy was of paternal origin, indicating a postzygotic event.  相似文献   

13.
Cutaneous malignant melanoma (CMM) is often familial, but the mode of inheritance and the chromosomal location of melanoma susceptibility locus are controversial. Identification of a 34-year-old woman with eight primary malignant melanomas, multiple atypical moles, and a de novo constitutional cytogenetic rearrangement involving chromosomes 5p and 9p suggested the presence of a melanoma predisposition gene at one of these locations. A high-resolution karyotype showed a partial deletion of a dark-staining Giemsa band, either 5p14 or 9p21. The patient was heterozygous for five 5p14 RFLPs. In situ hybridization with D9S3 indicated that this 9p21 marker was deleted. Gene dosage studies demonstrated the deletion of two more distal 9p21 markers, D9S126 and IFNA. In addition, she was hemizygous for the more proximal 9p21 short tandem-repeat polymorphism at D9S104. D9S18, D9S19, and D9S33 were retained, localizing the deletion to 9p21 between D9S19 on the proximal side and D9S33 on the distal side. Pulsed-field gel electrophoresis with D9S19 and D9S33 did not reveal any junction fragments in the patient's DNA. This germ-line deletion suggests that mutations in a 9p21 gene may initiate melanoma tumorigenesis.  相似文献   

14.
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) share a cytogenetic deletion of chromosome 15q11q13. To determine the extent of deletion in AS we analyzed the DNA of 19 AS patients, including two sib pairs, with the following chromosome 15q11q13--specific DNA markers: D15S9-D15S13, D15S17, D15S18, and D15S24. Three molecular classes were identified. Class I showed a deletion of D15S9-D15S13 and D15S18; class II showed a deletion of D15S9-D15S13; and in class III, including both sib pairs, no deletion was detected. These molecular classes appear to be identical to those observed in PWS. High-resolution cytogenetic data were available on 16 of the patients, and complete concordance between the presence of a cytogenetic deletion and a molecular deletion was observed. No submicroscopic deletions were detected. DNA samples from the parents of 10 patients with either a class I or a class II deletion were available for study. In seven of the 10 families, RFLPs were informative as to the parental origin of the deletion. In all informative families, the deleted chromosome 15 was observed to be of maternal origin. This finding is in contrast to the paternal origin of the deletions in PWS and is currently the only molecular difference observed between the two syndromes.  相似文献   

15.
Summary An 11-month-old infant with Greig cephalopolysyndactyly syndrome and mild developmental delay is described. High-resolution chromosomal analysis showed a de novo interstitial deletion of chromosome 7p with breakpoints located at p13 and p14. Cytogenetic analysis of polymorphisms of the heterochromatin in the pericentromeric region suggested the deleted chromosome was of paternal origin. This case confirms the localization of Greig syndrome to 7p13 and emphasizes the importance of performing cytogenetic studies on patients with Mendelian disorders who have unusual findings or cognitive abnormalities in a disorder usually associated with normal intellect. Review of clinical features in published reports of patients with a deletion involving 7p13 showed a number to have features overlapping with Greig syndrome. Because of this, we suggest that cytogenetic aberrations, particularly chromosomal microdeletions, may represent a significant etiology for Greig syndrome.  相似文献   

16.
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.  相似文献   

17.
The hairpin-tail (Thp) deletion in chromosome 17 is lethal when it is inherited from the mother, whereas heterozygotes with Thp deletion that is paternal in origin are viable. The lethal effect of maternal Thp is due to a deficiency of the Tme gene that is located in the Thp-deleted region. In this article we describe analysis of the viability of mice with tertiary trisomy of chromosome 17, Ts(17(16]43H, with different doses of the paternal and maternal Tme alleles. We demonstrate that the presence of an additional copy of the region with the Tme gene in the female gamete entirely compensates maternal Thp lethality. We failed to compensate the absence of the Tme gene from the chromosome of maternal derivation by two doses of Tme derived from the father. Thus evidence was obtained indicating that there are significant differences between the activities of the paternal and maternal alleles of the Tme gene due to chromosome imprinting.  相似文献   

18.
Interstitial deletion of chromosome region 3p14.1, including FOXP1 gene, is relatively rare and, until recently, there were no strong evidences to support the hypothesis that this microdeletion could play a role in the etiology of genomic disorders. Here, we report on an adult patient with a recognizable phenotype of autism, severe speech delay, deficit of motor coordination and typical dysmorphic features. Analysis of a dense whole genome single-nucleotide polymorphism (SNP) array showed a 1 Mb interstitial deletion of chromosome region 3p14.1 including the entire coding region of FOXP1 (MIM 605515) gene. In order to study the parental origin of the deletion, we analyzed selected SNPs in the deleted area in the proband and his parents showing Mendelian incompatibilities suggesting a de novo deletion on the chromosome of paternal origin. Despite the frequency of this genomic alteration has not been estimated, our patient confirm the hypothesis that microdeletion of 3p14.1 seems to be a rare cause of cognitive disorders and that haploinsufficiency of FOXP1 may play a role in neurological and language deficits in patients carrying a 3p14.1 deletion. Finally, our patient is also important because useful to further delineate the clinical spectrum secondary to the 3p14.1 microdeletions.  相似文献   

19.
戴和平  邓汉湘 《遗传学报》1992,19(4):298-303
本文对三例X染色体结构异常46,X,dup(X)(p21);46,X,del(X)(p11);46,X,i(Xq)患者及其父母,用X染色体短臂或长臂上的限制性片段长度多态性(RFLPs)作为遗传标记,研究了异常X染色体的起源和形成机理。结果表明,dup(X)(p21)和del(X)(p11)起源于父方,而i(Xq)起源于母方。dup(X)(p21)是由X染色体姊妹染色单体不均等的互换所引起的,del(X)(p11)是由于X染色体断裂后丢失所致,i(Xq)的发生是由于卵母细胞X染色体着丝粒错分裂。  相似文献   

20.
The Angelman (AS) and Prader-Willi (PWS) syndromes are two clinically distinct disorders that are caused by a differential parental origin of chromosome 15q11-q13 deletions. Both also can result from uniparental disomy (the inheritance of both copies of chromosome 15 from only one parent). Loss of the paternal copy of 15q11-q13, whether by deletion or maternal uniparental disomy, leads to PWS, whereas a maternal deletion or paternal uniparental disomy leads to AS. The differential modification in expression of certain mammalian genes dependent upon parental origin is known as genomic imprinting, and AS and PWS represent the best examples of this phenomenon in humans. Although the molecular mechanisms of genomic imprinting are unknown, DNA methylation has been postulated to play a role in the imprinting process. Using restriction digests with the methyl-sensitive enzymes HpaII and HhaI and probing Southern blots with several genomic and cDNA probes, we have systematically scanned segments of 15q11-q13 for DNA methylation differences between patients with PWS (20 deletion, 20 uniparental disomy) and those with AS (26 deletion, 1 uniparental disomy). The highly evolutionarily conserved cDNA, DN34, identifies distinct differences in DNA methylation of the parental alleles at the D15S9 locus. Thus, DNA methylation may be used as a reliable, postnatal diagnostic tool in these syndromes. Furthermore, our findings demonstrate the first known epigenetic event, dependent on the sex of the parent, for a locus within 15q11-q13. We propose that expression of the gene detected by DN34 is regulated by genomic imprinting and, therefore, that it is a candidate gene for PWS and/or AS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号